
www.manaraa.com

Western Washington University Western Washington University

Western CEDAR Western CEDAR

WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship

2011

Irregular tessellated surface model map algebras to define flow Irregular tessellated surface model map algebras to define flow

directions and delineate catchments using LiDAR bare earth directions and delineate catchments using LiDAR bare earth

sample points sample points

Gerald B. Gabrisch
Western Washington University

Follow this and additional works at: https://cedar.wwu.edu/wwuet

 Part of the Geography Commons

Recommended Citation Recommended Citation
Gabrisch, Gerald B., "Irregular tessellated surface model map algebras to define flow directions and
delineate catchments using LiDAR bare earth sample points" (2011). WWU Graduate School Collection.
170.
https://cedar.wwu.edu/wwuet/170

This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate
Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an
authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

https://cedar.wwu.edu/
https://cedar.wwu.edu/wwuet
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=cedar.wwu.edu%2Fwwuet%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwuet/170?utm_source=cedar.wwu.edu%2Fwwuet%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu

www.manaraa.com

Irregular Tessellated Surface Model Map Algebras to Define Flow

Directions and Delineate Catchments Using LiDAR Bare Earth Sample

Points

By

Gerald B. Gabrisch

Accepted in Partial Completion

of the Requirements for the Degree

Master of Science

Moheb A. Ghali, Dean of the Graduate School

ADVISORY COMMITTEE

Chair, Dr. Scott Miles

Dr. Michael Medler

Dr. Robert Mitchell

www.manaraa.com

MASTER‟S THESIS

In presenting this thesis in partial fulfillment of the requirements for a master‟s degree at
Western Washington University, I grant Western Washington University the non-exclusive
royalty-free right to archive, reproduce, distribute, and display the thesis in any and all
forms, including electronic format, via any digital library mechanisms maintained by
Western Washington University.

I represent and warrant this is my original work, and does not infringe or violate any right
of others. I acknowledge that I retain ownership rights to the copyright of this work,
including but not limited to the right to use all or part of this work in future works, such as
articles or books.

Library users are granted permission for individual, research and non-commercial
reproduction of this work for educational purposes only. Any further digital posting of
this document requires specific permission from the author.

Any copying or publication of this thesis for commercial purposes, or for financial gain, is
not allowed without my written permission.

Signature __________________________________

 Date __________________________________

www.manaraa.com

Irregular Tessellated Surface Model Map Algebras to Define Flow

Directions and Delineate Catchments Using LiDAR Bare Earth Sample

Points

A Thesis

Presented to

The Faculty of

Western Washington University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Gerald B. Gabrisch

November 2011

www.manaraa.com

iv

Abstract
Flow directions and catchment algorithms have historically utilized raster-based data

models. A significant body of literature focuses on raster-based interpolation errors, and

the subsequent surface reconditioning to compensate for those errors, that together

degrade the accuracy of the derived flow directions and catchments. This research seeks to

improve upon the raster-based approach by developing and evaluating a vector-based

approach to generating flow directions and delineating catchments that preserves the

accuracy of the input point data through the use of irregular tessellated surface models.

Specifically, the Python computer programming language was used in conjunction with a

geographic information system (GIS) to develop ITSMHydro, a custom toolset that creates

a Delaunay triangulated irregular network (TIN) from LiDAR bare-earth sample point data,

and subsequently generates flow directions, delineates basins, and processes spurious sink

catchments. Surface model accuracy, and area, shape, and overlap of the resulting

catchments were compared with catchments delineated using industry-standard raster-

based digital terrain models. The vector-based approach implemented through

ITSMHydro was limited to file sizes less than approximately 120,000 LiDAR strikes that

processed in approximately 30 hours, whereas the industry-standard raster-based approach

transformed 111,000,000 LiDAR strikes across the study area into a 3-feet pixel surface

model and generated catchment boundaries in approximately 36 hours. A root mean

square analysis of surface models indicates that surface model quality is more heavily

degraded when LiDAR sample points are interpolated to raster grids as opposed to surface

www.manaraa.com

v

models relying on Delaunay TIN interpolation, suggesting that the vector-based approach

maintains the quality and precision of the LiDAR input data. For the four test areas in

which the two approaches were compared, ITSMHydro generated catchments that were

generally smaller (percent difference in areas ranged from -83.97% to 9.39%) and with

more complex boundaries (i.e. lower isoperimetric quotient in 3 out of 4 test areas) than

the associated raster-based catchments. Coefficient of areal correspondence (CAC), a

measure of overlap between catchments generated by the two methods where a value of 1

indicates perfect overlap, ranged from 0.28 to 0.80 in the four test areas. Given the lower

relative accuracy of raster-based surface models evident in the study area, these differences

suggest use of the raster-based approach may compromise accuracy in area, shape, and

location of the resulting catchments. A vector-based approach that preserves the accuracy

of the input data is preferred, especially in areas of low topographic relief. The file size

constraints limit application of the approach developed herein, however, at least until

technological advances and/or code revisions improve computer processing speed and file

size capacity.

www.manaraa.com

vi

Acknowledgements

I would like to extend my deepest thanks to: Scott Miles, Michael Medler and Robert

Mitchell for serving on my committee and helping me to develop and expand my body of

knowledge; the citizens of the Lummi Nations for graciously sharing their GIS data; Jeremy

Freimund for providing direction, encouragement, criticism, and allowing me to

incorporate my research into my workload; and my friends and family for supporting my

efforts and long hours away from home. Additionally, I would like to thank Treva Coe for

her firm and extensive editing skill, countless hours of childcare, and her warmth, love,

and support of this project over the years.

www.manaraa.com

vii

Contents
ABSTRACT .. IV

ACKNOWLEDGEMENTS .. VI

LIST OF FIGURES ... IX

LIST OF TABLES .. XI

LIST OF EQUATIONS .. XI

SECTION 1: INTRODUCTION ... 1

SECTION 2 LITERATURE REVIEW ... 4

2.1 LIDAR ... 4

2.2 OVERVIEW OF RASTER DTMS IN SURFACE WATER ANALYSIS 5

2.3 RASTER DTM CREATION, INTERPOLATION, RESOLUTION, AND

CORRECTION ... 7

2.4 OVERVIEW OF IRREGULAR TESSELLATED DTMS11

SECTION 3: DATA ... 16

3.1 STUDY AREA ..16

3.2 DATA..18

SECTION 4: METHODS .. 21

4.1FILE GEODATABASE CREATION ...22

4.2 BOUNDING POLYGON CREATION ...22

A user-defined bounding polygon must be stored within the feature dataset prior to
ITSMHydro code execution. This bounding polygon defines and limits the extent of
the analysis area. ... 22

4.3 TIN CREATION ..22

4.4 LOAD TIN COMPONENTS ..24

4.5TIN FLOW DIRECTIONS ...26

4.6 TIN DTM BASIN DELINEATION ..29

4.7 SINK PROCESSING..33

4.8 RASTER DTM CREATION AND BASIN DELINEATION37

4.9 COMPARATIVE METRICS FOR CATCHMENT POLYGONS41
SECTION 5: RESULTS .. 43

5.1 RASTER CATCHMENT DELINEATION AND RMSE ANALYSIS RESULTS ..43

www.manaraa.com

viii

5.2 ITSMHYDRO CATCHMENT AND RASTER CATCHMENT DELINEATION

COMPARISON AND ANALYSIS ..45
SECTION 6: DISCUSSION ... 52

6.1 RSME ANALYSIS OF INTERPOLATED SURFACES52

6.1 RASTER – VECTOR DELINEATION COMPARISONS FOR SHAPE AND AREA

 ..53

6.2 ITSMHYDRO PROCESSING TIMES AND FILE SIZE LIMITATIONS54

6.3 BOUNDING POLYGON CONSIDERATIONS ..58

6.4 FLOW DIRECTIONS LINES AND CATCHMENT DELINEATIONS60

6.5 DISCUSSION ON MODEL VALIDATION ...61

SECTION 7 CONCLUSION AND FUTURE WORK .. 63

WORKS CITED .. 67

APPENDIX A- 0_LOADDATAFROMTINTOGEODATABASE.PY ... 70

APPENDIX B- 1_FLOWDIRECTIONSFROMTIN.PY ... 71

APPENDIX C- 2_CREATECATCHMENTPOLYGONS.PY .. 78

APPENDIX D- 3_AGGREGATESINKCATCHMENTS.PY ... 96

APPENDIX F- SURVEYED SAMPLE LOCATIONS AND SURFACE MODEL ELEVATION VALUES

... 112

www.manaraa.com

ix

List of Figures
Figure 1 A typical raster DTM showing the resulting D8 flow direction calculations. 6

Figure 2 Flow direction calculations and the resulting basin delineation line in blue. 6

Figure 3 For each triangle in a Delaunay TIN, a circle that intersects the triangles nodes
will contain no other nodes (de Berg 2008). .. 12

Figure 4: shows the relations ship between the Voronoi diagram (red), and the TIN edges
(black). The TIN edges connect the nodes of adjacent Voronoi polygons (de
Berg 2008). ... 13

Figure 5: The Lummi Reservation shown in orange and the extent of LiDAR coverage
(shown in green). The vendor-provided LiDAR data was edited to exclude any
sample point lower than the mean higher high water line (NAVD88 vertical
datum), and east of the Nooksack River. .. 17

Figure 6: The working directory after 0_ LoadDataFromTINToGeoDatabase.py execution.
 .. 26

Figure 7: The resulting edge and node feature classes generated by

0_LoadDataFromTINToGeoDatabase.py. .. 26

Figure 8: An overview of the processing steps of 1_FlowDirectionsFromTIN.py. 27

Figure 9: Shows the contents of the working directory after execution of

1_FlowDirectionsFromTIN.py. .. 29

Figure 10: The flow direction lines generated by 1_FlowDirectionsFromTIN.py. 29

Figure 11: An overview of the geoprocessing steps of 2_CreateCatchmentPolygons.py. 30

Figure 12: The grouped flow direction lines generated by 2_CreateCatchmentPolygons.py. ... 32

Figure 13: The areas in purple show those areas that exist on the periphery of any group of
flow direction lines and represent those areas that contain catchment
boundaries. The lines shown in gray are the Voronoi polygons generated from
the vertices of the purple area. .. 32

Figure 14: Final catchment delineations and grouped flow directions lines. 32

Figure 15: Working directory showing all files generated by 2_CreateCatchmentPolygons.
 .. 33

Figure 16: A user defined setting in 2_CreateCatchmentPolygons.py will delete temporary files
from the working directory no longer required by ITSMHydro. 33

Figure 17: An overview of the geoprocessing steps executed by

3_AggregateSinkCatchments.py. .. 34

Figure 18: This surface has two sinks. The yellow lines are those edge lines with a direction
of flow away from the sink. The red lines are the first path water would take out
of the sink if the sink were filled with water. .. 35

www.manaraa.com

x

Figure 19: The final delineation is called catchments in the working directory. The

catchment delineation shown in figure 18 was renamed to catchments1. All
numerically numbered catchment feature classes are retained in the working
directory. .. 35

Figure 20: Working directory showing all files generated by 3_AggregateSinkCatchments.py.37

Figure 21: Working Directory showing all files generated by 3_AggregateSinkCatchments.py
using the “delete temporary files” setting. .. 37

Figure 22: A typical flow direction surface detail. Each cell stores a numeric value detailing
the flow direction in one of eight cardinal directions. ... 40

Figure 23: A typical flow accumulation surface detail; each cell stores the count of cells that
pour into that cell. Higher cell counts are displayed as a darker blue. 40

Figure 24: Resulting catchment boundaries generated from a 3 ft natural neighbor DTM.
 .. 40

Figure 25: Test area 1 catchment comparison between the ITSMHydro delineation and a 3
ft NN raster DTM delineation using all available LiDAR points. 47

Figure 26: Test area 2 catchment comparison between the ITSMHydro delineation and a 3
ft NN raster DTM delineation using all available LiDAR points. 48

Figure 27: Test area 3 catchment comparison between the ITSMHydro delineation and a 3
ft NN raster DTM delineation using all available LiDAR. 49

Figure 28: Test area 4 catchment comparison between the ITSMHydro delineation and a
30 ft NN raster DTM delineation using a LiDAR point appoximatly equal to
the pixel density of a 30 ft pixel DTM. ... 50

Figure 29: Processing time for the Create Flow Direction tool. .. 56

Figure 30: Processing time for Create Basin Boundaries. 56

Figure 31. Processing times for Aggregate Sinks. .. 57

Figure 32: A hypothical TIN where the edge lines on the periphery of the TIN connect
node a substantial distance apart.. .. 59

Figure 33: Showing an example of flow direction lines that cross or intersect the
catchment boundary. ... 60

www.manaraa.com

xi

List of Tables
Table 1: GIS data summary. This table details the spatial datasets utilized in this research.

LiDAR point locations were either used directly in the ITSMHydro analysis, or
used to create raster surface models. Hydrography and storm water facility data
were used to hydrologically correct raster surface models, and survey point data
were used to assess the quality of the the raster based surface models. 20

Table 2: Input data to create a hydrologically corrected TIN surface. 24

Table 3 Surface model cell resolutions and interpolation methods. 38

Table 4 Surface model Root Mean Square Error values based on pixel sizes and
interpolation methods. Also shown is the RMSE of the LiDAR sample points as
reported by the LiDAR vendor, TerraPoint. ... 45

Table 5: Comparative metrics between ITSMHydro catchment delineations and raster
catchment delineations. ... 51

Table 6: Number and type of feature geometry iterations required by each ITSMHydro
tool. ... 55

List of Equations
Equation 1 The distance formula for calculation the distance between two coordinates. .. 28

Equation 2 Formula for calculating the percent slope of a line where run is the value of d
from equation 1. .. 28

Equation 3 Root Means Square Error equation to determine the average difference
between the interpolated cell values and surveyed point elevation values. 39

Equation 4: Formula to calculate percent difference between catchment areas. 41

Equation 5: The formula for calculating the coefficient of area correspondence as
expressed as the ratio of the area of the intersections of two polygons over the
area of the union of two polygons. .. 41

Equation 6: The formula for calculating the isoperimetric quotient as an indicator of the
sinuosity of the catchment polygon. .. 42

www.manaraa.com

Section 1: Introduction

The legal, cultural, and economic implications of surface water and ground water quality

and availability necessitate high-quality boundary delineations and flow direction models for

watersheds. A number of commercially available Geographic Information Systems (GIS) provide

toolsets that allow the delineation of basin boundaries using raster-based surface models

(Garbrecht and Martz 2000; Maidment 2002). These watershed delineation tools, in combination

with the nationwide coverage of United States Geologic Survey (USGS) raster-based digital terrain

models (DTM), provide a convenient and popular means for delineating watershed boundaries.

A significant body of literature raises questions about the quality of raster-based surface

models for delineating catchment boundaries. Criticism stems from the over or underestimation

of pixel values resulting from the interpolation algorithms used to generate raster-based surface

models, the flow direction constraints of the raster-based surface models, and limitations of raster

cell size (Mark 1984; O'Callaghan and Mark 1984; Mark 1988; Fairfield and Leymarie 1991).

Advances in computer processing times, data storage capacities, and surface elevation data

collection are rapidly improving the science and practice of watershed delineation. DTMs

generated from higher quality and higher precision airborne-remote-sensing Light Distance and

Ranging (LiDAR) datasets can surpass the quality of the photogrammetric techniques used to

generate 10-meter pixel USGS digital terrain models (Campbell 2002). LiDAR can produce a high

density of randomly scattered sample points that can be interpolated into regular tessellated

surface models, raster surface models, or used to build irregular tessellated surface models such as

Triangulated Irregular Networks (TIN), and Voronoi Diagrams.

www.manaraa.com

2

The toolsets necessary to delineate catchment boundaries using vector-based-irregular-

tessellated surface models are not readily available in a GIS. This research details the generation

and application of algorithms that produce catchment delineations using a combination of TIN

surface models and Voronoi diagrams generated from LiDAR bare-earth sample points, and

compares and contrasts the catchment delineation results against raster-based surface models

generated from the same LiDAR sample points. The irregular tessellated catchment delineations

are evaluated for differences in shape, area, and processing speed against industry-standard raster-

based catchment delineation algorithms. This research addresses the question of whether

tessellated surface models can produce a higher quality, higher precision, catchment delineation

than the basin delineation generated from a raster-based surface model.

This research is important to the field of geographic information sciences because the

algorithms presented in this research do not require additional levels of data transformation or

abstraction that can degrade the data and compromise the quality of catchment boundary. Hence,

my irregular tessellated surface models generate higher quality catchment boundaries. Such

catchments represent a more legally defensible delineation, and therefore may affect jurisdictional

responsibilities with respect to water rights and other water resources-related issues.

This thesis is divided into the following sections: a literature review, data sources, methods,

results, discussion and conclusion. The literature review focuses on the LiDAR data collection

process and research into field of catchment delineations using raster-based surface models. The

data section details the study area and data inputs. The methods section explaines the processing

steps of ITSM Hydro, a Python-based series of algorithms that delineate flow direction lines and

www.manaraa.com

3

create catchment boundaries using LiDAR bare-earth sample points. The methods section also

details the raster-based catchment delineation methods that I used to compare and contrast the

results of the Python algorithms and several different metrics used to assess raster-surface-model

quality and to quantify differences in area and shape between the tessellated surface-model

catchment delineations and the raster-based catchment delineations. The results section contains

maps of catchment delineations for four test areas, and the comparative metric results detailing the

comparisons of catchment delineations for both raster and ITSMHydro methods. The discussion

section highlights differences between the tessellated and the raster-based delineations, and the

limitations and conditions of the ITSMHydro tool set. Finally, the conclusion and future work

section is a discussion of suggested future enhancements and improvements to the tools developed

for this research.

www.manaraa.com

4

Section 2 Literature Review

This literature review examines trends in GIS and geomorphometry to correct data model

errors and extract hydrography and basin boundaries from digital surface models in a GIS. This

literature review will also address recent approaches to overcoming sampling error for the purpose

of constructing higher quality surface models for the extraction of hydrographic features, and

addressing the error introduced by the DTM. Finally, this literature review highlights the use of

tessellated surface data models to predict overland flow directions.

This section is organized thus: Section 2.1 describes the LiDAR data collection process.

Section 2.2 reviews the use of regular gridded surface models for defining flow direction surfaces,

flow accumulation surfaces, and defining catchment boundaries. Section 2.3 reviews the process

of interpolating a regular gridded surface model from a random distribution of sample points and

methods to compensate for error introduced in the interpolation process. Section 2.4 introduces

the concept of irregular tessellated surface models and summarizes the research on their use in

hydrologic modeling.

2.1 LiDAR

LiDAR data is widely recognized as a means to improve the spatial accuracy and precision

of surface elevation data over the USGS DTM. LiDAR is a remote sensing technique wherein a

pulse laser is attached to the bottom of aircraft containing a high-accuracy global positioning

system (GPS), a sensor to capture the reflecting laser pulse, and an on-board computer to correlate

the plane‟s altitude and position with the individual LiDAR pulse returns (Campbell 2002).

www.manaraa.com

5

Pulses from the laser are reflected from ground surfaces (bare earth, vegetation, buildings and

other structures on the ground) and captured by the sensor. The onboard computer calculates the

coordinate of the pulse strike and records the x, y, and z values based on the time difference

between the pulse emission and the pulse return, and the known current position of the aircraft

(Wehr 1999). In ideal conditions, LIDAR can produce sub-meter elevation accuracy for each

square meter of surface, which is an improvement over the 7 to15 meter error of the traditional 10

to 30 meter DEMs interpolated using stereo-photogrammetry techniques implemented by the

USGS (Garbrecht and Martz 2000). LiDAR data collection results in a point cloud, or a series of

different LiDAR strike returns, including a first return dataset that records the upper elevation

values of surface vegetation (a false panchromatic aerial photograph based on the strength of the

returning LiDAR strike) and a last return, or bare-earth surface for all LiDAR strikes that penetrate

the vegetation canopy (Campbell 2002).

2.2 Overview of Raster DTMs in Surface Water Analysis

Raster-based surface models are the dominant data structure for predicting overland flow

directions and defining watershed boundaries within a GIS (Garbrecht and Martz 2000). Raster

DTMs are the standard input into a number of GIS software packages such as ArcGIS, WMS,

HEC-RAS, and GRASS (Maidment 2000). Raster-based GIS flow direction algorithms iterate

through the surface model matrix and computationally define flow direction based on the steepest

slope to the surrounding coincident cells, otherwise known as the deterministic-eight-direction

(D8) algorithm (Figure 1;Maidment 2000). The flow direction calculations are then used to

www.manaraa.com

6

computationally define watershed boundaries by defining cells that share flow connectivity (Figure

2).

The popularity of raster-based surface models for hydrologic modeling is due to the

availability of nation-wide DEM data sets, the rapid computer processing times of the raster data

model within a GIS, and the limitations imposed by computer storage capacities (Garbrecht et al.

2001). Limitations of data availability, computer processing speeds, and data storage capabilities

have historically outweighed the facts that cell resolution, overestimation and underestimation of

cell values due to interpolation, and flow direction constraint (to eight cardinal directions) of the

raster data model each degrade the quality of the flow direction and watershed boundary

calculations. In areas of high topographic relief, the errors in raster-based flow directions due to

cell resolution, interpolation, and flow direction constraints are less pronounced since flow is

typically unidirectional and flow paths converge to a single discharge point (Jones 2002). In areas

of low topographic relief, however, subtle differences in elevation values compound with

Figure 1 A typical raster DTM
showing the resulting D8 flow
direction calculations.

Figure 2 Flow direction calculations
and the resulting basin delineation
line in blue.

www.manaraa.com

7

interpolation uncertainty and increase the number of artificial sink cells (cells with no outflow),

limiting the quality of flow direction certainty across the surface model (Jones 2002).

2.3 Raster DTM Creation, Interpolation, Resolution, and Correction

Garbrecht and Martz (2000) provided a succinct overview of the issues affecting the

definition of stream channels and the delineation of watershed boundaries based on raster DTMs.

The authors excluded from their discussion areas influenced by urban development, which might

alter surface flow patterns.

A number of issues limiting accuracy were highlighted in the paper including: (1) three

quality levels of USGS DEMs and the techniques used to generate DTMs of those qualities; (2)

how USGS DEMs store integer values for elevation, which in turn limits slope calculations and

subsequently flow directions in areas of low spatial relief; and (3) cell resolution, or pixel size. Cell

resolution is a critical issue with DTMs because cell resolution affects the number of sinks, or pits,

i.e., cells that do not have flow out paths. Pits are a problem exacerbated by low cell resolution

and low topographic relief that leads to incomplete drainage patterns. Cell resolution also affects

the resulting stream length, with low-resolution DTMs producing shorter stream lengths than the

actual channel.

Garbrecht and Martz (2000) also highlighted some issues with the D8-direction-flow-path

algorithm common in most GIS applications. Because flow is restricted to only one of eight

cardinal directions, divergent flow is not captured in areas of low spatial relief over convex slopes,

resulting in biased flow directions. The authors acknowledged that if the intended outcome is a

www.manaraa.com

8

watershed delineation, the D8 is an adequate choice over multiple flow path algorithms. Sink

cells, whether actual or artificially generated by DTM interpolation, are problematic for the D8

regardless of whether they are a result of over- or underestimations of cell value. A number of

techniques, including an artificial computational leveling of sinks to enforce hydraulic connectivity

(filling) or a computational lowering of obstructions (breaching) were mentioned, but specific

methods were not discussed in detail. Finally, the authors stated that methods to define flow

across flat areas, whether actual or artificially created, are elusive and the user will have to „contend

with approximations.‟

Barber and Shortridge (2005) addressed the issue of raster cell resolution in a comparative

analysis of the hydrography and watershed boundary results from a 6-meter cell LIDAR-generated

raster surface model compared with standard 30-meter USGS National Elevation Dataset (NED)

DTMs. Barber and Shortridge compared the results in an area of high spatial relief and an area of

low spatial relief in North Carolina using the standard hydrography toolset found in a popular

GIS system, ESRI ArcGIS 8. For both the LIDAR and NED data, stream networks were

calculated, random sample points field-validated, and the resulting values compared statistically

between the different ArcGIS hydrologic model outputs produced by the authors. Barber and

Shortridge found that the LIDAR surface model did not produce significantly better results for

stream networks, but it did show a modest improvement in watershed boundaries, especially for

the area of low relief. Barber and Shortridge mentioned the error introduced by surface feature

artifacts like bridges, but the investigators do not describe the implementation of fill procedures or

stream burning. However, the metadata for the 20 meter LIDAR DTM produced by the state of

North Carolina (from which the author‟s 6-m DTM was interpolated) indicates it was corrected for

www.manaraa.com

9

known bridges. Furthermore, the interpolation method used is a potential source of error

(Wechsler 2007) and likely skews the stated results of this paper.

Haile and Rientjes (2005) focused mainly on the issues of DTM interpolation and cell

resolution to address issues in modeling the effects of flooding. Beginning with a 1.5-meter

resolution LIDAR-derived surface model, the researchers employed a number of re-sampling

methods to derive lower resolution surface models. The lower resolution surface models were

then compared for computer processing time and the accuracy of the model hydraulic outputs.

For example, a resampled 15-meter DTM took approximately 1 day to process in their flood

inundation model, which included the generation of surface flow patterns, while a 2.5-meter DTM

took 13 days to process (1.5GHz Pentium IV). The resulting inundation area was significantly

affected by the raster cell size, with the coarse 15-meter DTM showing a 3-fold increase in

inundated depth compared to a 5-meter resolution DTM. The authors employed nearest

neighbor, bilinear, and bicubic resampling techniques and generated a range of different output

cell sizes, and the elevation differences of the new surfaces were compared against the original 1.5-

meter surface. For all three resampling methods, the 4.5-meter raster resulted in a mean ~0.54

meter overestimation, and the 10-meter DTM was associated with an underestimation of 0.14-0.45

meters. While this article is a good treatise on the different resampling methods and processing

times, and althoughthe authors made a strong case that model accuracy is related to DTM cell size,

the authors never stated the total relief of the study area to give the reader an indication of the

significance of the differences in the interpolation comparisons (Haile 2005).

Wechsler (2007) provided a succinct cautionary outline of the fundamental problems

associated with the DTM data structure. Wechsler systematically addressed DTM sampling error,

www.manaraa.com

10

differences in the algorithms used to derive surface features, DTM grid resolution, interpolation

from the raw sample data to a raster DTM, and the use of surface modification to enforce flow

connectivity as potential constraints on any watershed analysis. The most pertinent information

he provides is the application of a Monte Carlo simulation to evaluate the bias introduced through

the filling of the DTM to remove pits. When filling a DTM, an algorithm passes over each DTM

cell and identifies which cells are lower than the eight neighboring cells; if a cell is identified as

lower than its neighbors, the cell is marked as a sink, or depression. The fill process

computationally corrects the z-value of the sink to ensure that there will be flow connectivity across

the DTM; that is, the z-value of the cell is raised to equal the elevation of its neighbors, thereby

enforcing flow connectivity. Wechsler‟s work showed that filling the DTM influences slope and

alters the flow regime of the original surface, and he demonstrated that the problem of surface

abstraction is aggravated in areas of relative flatness, like agricultural fields.

Similarly, Lindsay and Creed (2005) addressed error introduced through the process of

filling DTMs, but they also presented a method to reduce error associated with removing

depressions from the surface model. When breaching, the connectivity of the sink cell with

surrounding cells is enforced by lowering the z values for any cells that form an obstruction

between the sink and cells at a predefined distance from the sink. Neither filling (the raising of

sink cells) nor breaching (the lowing of obstruction cells) provides a useful way to enforce flow

connectivity alone since the utility of each fill or breach depends on the cause of the sink, which is

an unknown. For example, if the sink is a result of an underestimation of the cell value, then

filling is the preferred method, and if the sink is a result of an overestimation of neighboring cells,

then breaching is the preferred method. Lindsay and Creed acknowledged the shortfalls of filling

www.manaraa.com

11

and breaching and then presented a method called the impact reduction approach (IRA) to

overcome this shortfall. From the initial surface model, the IRA generates two additional copies of

the surface model and one result raster at the same spatial extent of the original surface. All sinks

are filled in the first surface model copy and breached in the second copy. The two new surfaces

are analyzed computationally on a cell-by-cell basis, comparing the number of fills/breaches and

the mean absolute difference from the original surface. The resulting number is written to the

result raster. The result raster is iterated cell-by-cell and the resulting values determine a fill or

breach of the coincident cells of the original surface model. After a substantial and detailed

statistical analysis of the differences in the fill/breach methods, the authors concluded that the

filling method typically employed in commercial GIS software packages greatly impact the derived

terrain attributes, particularly in areas of flat bottomlands. The authors showed that their IRA

method is a substantial improvement in the construction of hydrologically enforced surface

models.

2.4 Overview of Irregular Tessellated DTMs

Two tessellated data structures for representing a continuous elevation surface are the

Triangulated Irregular Network (TIN) (Peucker et al. 2002), and Voronoi diagram (VD) (Gold

1989). With a TIN, a given a set of scattered elevation sample points become nodes in the TIN

mesh, and the nodes are connected by lines which form triangles, all of which share a topological

relationships with their adjacent neighbors (Figure 4;Peucker 1977). TIN surface models in

Environmental Systems Research Institute (ESRI) GIS software package ArcGIS utilize a Delaunay

www.manaraa.com

12

algorithm which result in short triangle facets that satisfy the criterion that, for any triangle, a

circumscribed circle that intersects the triangle nodes will not contain nodes from any coincident

triangles (Figure 3).

Figure 3 For each triangle in a Delaunay
TIN, a circle that intersects the triangles
nodes will contain no other nodes (de Berg
2008).

Voronoi diagrams (VDs), or Thiessen Polygons, can also be used to represent surface

elevation. VDs define an asymmetrical polygon region around each sample point such that any

area bound by the Voronoi polygon is closer to the sample point than any other sample point

(Gold 1989). Because polygon coverage is continuous over the surface, the inherent topological

relationship between adjacent polygons in the data structure lends itself to spatial modeling (Gold

1997).

A number of triangulation algorithms exist which will result in different triangulations for

the same points, for example, to minimize or maximize triangle angles, and quadtree(Sack 2000).

The edges in a Delaunay triangulation, or triangle sides, connect nodes that share the same spatial

www.manaraa.com

13

relationship as the adjacent polygons of a Voronoi diagram created from the same nodes where

other triangulation methods do not maintain this relationship (Figure 4). TIN surface models are

gaining popularity in the GIS community as researchers gain access to the popular LiDAR

elevation sample data, but the tools to use TINs in hydrologic modeling are not readily available to

GIS users.

Gehegan and Lee (2000) provided a clear overview

of the different types of tessellated surfaces, focusing their

research on the Voronoi diagram. The authors made the

argument that the raster-based surface and the interpolation

needed to derive the DTM lose important information

contained in the collected discrete point data. Most

notable are the loss of spatial relationships between the

adjacent sample points and the relative difficulty in

updating or changing the surface model. While the

authors recognized the utility of the DTM, they raised the

concern that the DTM might not be the best surface model for all applications. They suggest that

ordinary Voronoi diagrams (all areas closest to the sample point), farthest Voronoi diagrams (all

areas farthest from the sample point), higher order Voronoi diagrams (two or more points are

bound by the polygon), and Delaunay triangulations provide the file architecture necessary to

avoid DTM abstraction. When describing the creation process of the tessellations, the article

provides the fundamental methodology necessary to construct flow convergence networks from the

Figure 4: shows the relations ship
between the Voronoi diagram (red),
and the TIN edges (black). The
TIN edges connect the nodes of
adjacent Voronoi polygons (de Berg
2008).

www.manaraa.com

14

tessellations through an iterative process of sample point selection, coincident Voronoi polygon

selection, attribute retrieval, and attribute recalculations.

Dakowicz and Gold (2007) employed the use of Voronoi diagrams to model surface runoff

using tessellations and stated that the tessellation approach bypasses a number of the abstractions

imposed by the DTM, namely the error introduced by interpolation, the loss of the original sample

points, and the flow direction constraints imposed by the D8 algorithm. Dakowicz and Gold used

a series of sample points to create a TIN surface and a Voronoi diagram. They calculated the area

of each Voronoi cell, determined the rate of precipitation, calculated the rate of flow from each

cell to its downslope neighbor from the TIN edge, and passed the volume over time to the

downslope-Voronoi polygon. While Dakowicz and Gold provided a simple argument for using

tessellations to determine flow directions, what they fail to state in the article are specific methods

for how the tessellated data structure permitted the surface runoff simulation to pass information

to the downslope cell. The Dakowicz and Gold Voronoi model does bypass the sink problem

since precipitation volume per Voronoi cell over time is passed to its downhill neighbor, and when

the height in the Voronoi exceeds the pit height, flow passes down slope. Although not reviewed

here, Li and Piltner (2004) suggested that the file architecture of the tessellated surface

incorporates a related database record for each individual tessellation, and that this database allows

the storing, altering, and adding of attribute information, which can be returned for this type of

iterative analysis. Dakowicz and Gold may have used attribute passing to overcome computer

memory limitations in their analysis, but they failed to mention the computation time needed to

accomplish the attribute passing, or the areal extent of their research area, which might influence

model execution times. It is widely acknowledged that DTM-based processes are executed faster

www.manaraa.com

15

than vector-based processing, but at a sacrifice of spatial accuracy. Providing some statistical

information of the processing time per area would have indicated whether the tessellation

approach is computationally feasible with a commercially available desktop computer for

hydrologic modeling.

Finally, Tucker (Tucker et al. 2001) described a set of tools used to develop a distributed

rainfall-runoff model using TIN data structures generated with a Delaunay triangulation and the

associated Voronoi diagram. This article gives a detailed overview of the topological relationship

among TIN objects (nodes, edges, and triangles). Each node stores a pointer to the incoming edge

and the outgoing edge, each edge has a pointer to both nodes and both triangles, and each triangle

has pointers to its nodes, edges, and coincident triangles. This set of pointers is exploited in

several examples of pseudo-computer code to define flow path based on the relationship between

the TIN edges of the underlying Voronoi diagrams. The topological relationship between TIN

nodes is used to define flow directions, while at the same time the TIN node‟s corresponding VD

area is returned and passed to the downstream TIN node. The VD areas are summed and used to

define the total contributing watershed area.

www.manaraa.com

16

Section 3: Data

This section describes the study area and the data inputs including data sources. LiDAR

bare-earth sample data for a northwestern section of the USA are arbitrarily selected as sample data

to test algorithms that utilize irregular tessellated for the purpose of generating catchment

boundaries. These data are intended to address and bypass issues of error by raster interpolation,

constraints of raster-based flow routing routines, and pixel resolution as introduced by the raster-

based surface model. Section 3.1 details specific information about the study area, section 3.2

describes the data including the LiDAR source and quality and other contributing datasets used to

produce the highest quality raster surfaces and validate the quality of the raster surfaces used to

compare and contrast results.

3.1 Study Area

The study areas for this thesis are those lands that contribute to overland flow onto the

Lummi Indian Reservation, located near Bellingham, Washington (Figure 5), at approximately

48.79N degrees latitude and -122.62W degrees longitude. The Lummi Reservation is best

described as Puget Sound lowlands, including forested uplands, agricultural fields, cleared or

partially forested floodplains, river deltas, and rural residential density with some concentrations of

housing developments. The Lummi Reservation, and the adjacent non-Reservation lands, typically

has low topographic relief, with a maximum elevation of 600 feet and a mean elevation of 80 feet

over the 36.69 square mile study area.

www.manaraa.com

17

Figure 5: The Lummi Reservation shown in orange and the extent of LiDAR coverage (shown
in green). The vendor-provided LiDAR data was edited to exclude any sample point lower
than the mean higher high water line (NAVD88 vertical datum), and east of the Nooksack
River.

www.manaraa.com

18

3.2 DATA

 Between March 6th 2005, and May 4th, 2005, LiDAR data were collected and processed by

Terrapoint USA Inc. of The Woodlands, Texas (Terrapoint). Terrapoint used a 40 kHz ALTMS

(Airborne Laser Terrain Mapping System), a Trimble 4700 GPS receiver, a Honeywell H764 IMU,

and two Sokkia GSR2600 dual frequency GPS receivers mounted to a fixed wing aircraft averaging an

elevation 3500 feet to collect LiDAR data. The Terrapoint Project Report reports the following

accuracies (Terrapoint 2005):

Accuracy is as follows, quoted at the 95% confidence level (2 sigma),

Absolute Vertical Accuracy:

+/- 15-20 centimeters on Hard Surfaces (roads and buildings)

+/- 15-25 centimeters on Soft/Vegetated Surfaces (flat to rolling terrain)

+/- 25-40 centimeters on Soft/Vegetated Surfaces (hilly terrain)

Absolute Horizontal Accuracy:

+/- 20 – 60 centimeters on all but extremely hilly terrain.

Contour Accuracy:

2ft Contour National Map Accuracy Standard (NMAS)

All horizontal coordinate data were collected and referenced to North American Vertical

Datum of 1988 (NAVD88) and delivered in US State Plane Zone Washington North with coordinate

and elevation values listed in US Survey feet. Space-delimited text files of bare-earth sample points

provided by Terrapoint were transformed into ESRI shapefiles. The resulting shapefiles were manually

edited to exclude marine waters below the NAVD88 mean higher high water (MHHW) tidal line.

Figure 5 shows the extent of LiDAR data coverage (show in green) after those marine waters lower

www.manaraa.com

19

than the MHHW line were removed from the dataset to reduce overall file size and computer

processing time.

In 2006, Lummi Indian Business Council (LIBC) GIS staff used 6 ft. bare-earth raster DTM

surface models provided by Terrapoint, coupled with 2006 Pictometry imagery, to edit an existing

surface-water-hydrography data set, including stream and river networks and agricultural drainage

ditches, to conform to channels apparent from the DTM and the aerial imagery.

In 1998, an LIBC staff hydrologists and LIBC Water Resource Division staff conducted a field

inspection of all areas of the Lummi Reservation (Reservation) to identify the location of storm water

facilities (culverts, tide gates). The positions of storm water facilities were captured using a mapping

grade Trimble GeoXT Global Positioning System (GPS). Similarly, a survey of storm water facilities was

conducted by the Whatcom County Public Works (WC) department to capture the point locations of

storm water facilities off Reservation. An ESRI geodatabase-point-feature-class was provided by

Whatcom County, but no further detail are known about these WC data.

www.manaraa.com

20

Table 1: GIS data summary. This table details the spatial datasets utilized in this research.
LiDAR point locations were either used directly in the ITSMHydro analysis, or used to create
raster surface models. Hydrography and storm water facility data were used to hydrologically
correct raster surface models, and survey point data were used to assess the quality of the raster-
based surface models.

Data Provider Description Data Type Data Model Use

Terrapoint USA Inc.
Post processed LiDAR
bare-earth sample
points.

Text
Tab delimited text
files

Surface model
creation.

Lummi Indian
Business Council

Hydrography, rivers,
streams and irrigation
ditches.

Vector ESRI line Shapefiles
Surface model
reconditioning.

Lummi Indian
Business Council

On-Reservation storm
water facilities
(culverts)

Vector ESRI point Shapefile
Surface model
reconditioning.

Whatcom County
Off-Reservation storm
water facilities
(culverts)

Vector
ESRI Geodatabase
point feature class

Surface model
reconditioning.

Pacific Surveying and
Engineering

Surveyed elevation
control points.

Vector ESRI point Shapefile
Surface model
evaluation.

Aspect Engineering
Surveyed elevation
control points.

Vector ESRI point Shapefile
Surface model
evaluation.

www.manaraa.com

21

Section 4: Methods

This section details a sequence of geoprocessing tools developed in the Python

programming language that interface with ERSI ArcGIS v9.3.1- v10 to delineate flow direction

lines and catchments from a random distribution of sample points. The toolset, collectively called

Irregular Tessellated Surface Model Hydrography (ITSMHydro), requires the generation of a

geodatabase workspace and a TIN surface model to facilitate the spatial relationship and

geoprocessing of neighboring sample points (ESRI 2010). This section also details the methods

used to create and assess the quality of several raster-based surface models using different pixel

resolutions and interpolation. The raster surface models provide an industry-standard benchmark

against which to compare the ITSMHydro catchment delineations. Known watercourses and

storm water facilities serve to hydrologically correct the raster surface models prior to catchment

delineation using established ArcGIS ArcHydro methodologies to maximize the quality of the

raster delineations.

Subsections 4.1 and 4.2 detail the preprocessing steps required for execution of the

ITSMHydro tools, including the creation of a geodatabase workspace to hold model output files

and the creation of a bounding polygon to define the analysis extent. Subsection 4.3 describes the

methods used to create a hydrologically corrected TIN that „burns‟ stormwater facilities and known

stream networks into the TIN surface model. Subsections 4.4 – 4.7 summarize the ITSMHydro

Python algorithms which, respectively: (1) export TIN nodes (LiDAR sample points), edges (lines

connecting LiDAR points) and polygons (triangles formed by the TIN generation process) into the

ESRI file-geodatabase data workspace; (2) generate a new feature class of flow direction lines that

www.manaraa.com

22

describes the steepest path of descent from each LiDAR point; (3) utilize the flow direction lines to

create catchment boundaries for each set of connected flow direction lines; and (4) fill sinks.

Subsection 4.8 outlines the methods used to create a series of raster surface models using different

pixel resolutions and interpolation methods, assess the quality of those raster surface models, and

generate catchment boundaries from the highest quality surface.

4.1File Geodatabase Creation

An ESRI feature dataset within a geodatabase is required to store all geoprocessing outputs

from ITSMHydro. No specific naming conventions are required for the feature dataset or the

geodatabase. ITSMHydro was tested using ESRI file geodatabases due to the improved

performance and file storage capacity of the file geodatabase over the Microsoft Access personal

geodatabase (ESRI 2010).

4.2 Bounding Polygon Creation

A user-defined bounding polygon must be stored within the feature dataset prior to the

ITSMHydro code execution. This bounding polygon defines and limits the extent of the analysis

area.

4.3 TIN Creation

For consistency with the methodologies that generate the raster surface models used to

evaluate the ITSMHydro basin delineations, hydrologically-corrected Delaunay TINs were

generated to establish hydrologic connectivity. Delaunay TINs were choosen over other

triangulations methods because the Delaunay TIN polygons maintain the same spatial adjacent

www.manaraa.com

23

relationship between LiDAR points as the ordinary Vorinoi diagram, thus providing a way to

identify those points most spatially related.

LiDAR technology cannot capture the flow path of storm water facilities underneath roads

because those flow paths are blocked from the aerial view of the LiDAR beam. To enforce

hydrologic connectivity in those areas traversed by raised road beds, „culvert burning‟ was used to

establish flow paths through storm water facilities (Duke 2003). A 50-feet buffer polygon around

each storm water facility point was created to sufficiently span the width of raised roadbeds. A

new attribute was added to the resulting 50-feet buffer polygons and assigned a value equal to the

lowest elevation value recorded in the TIN. The 50-feet buffer polygon feature class was used for

TIN creation as shown in

Table 2 to replace any LiDAR nodes bound within the 50-feet polygons. Hydrography data

provided by the Lummi Nation were also used to enforce hydrologic connectivity by stream

burning the stream course into the TIN. The ArcGIS editing tool divide was used to insert vertices

in the stream courses at 3-foot intervals. The stream line‟s vertices were converted to a point

feature class. A new attribute column was added to the point feature class as a numerical data

type. This new numeric attribute was populated with descending values beginning with -1, and

descending -1 foot for each point along the line course. The points served as an input to create a

TIN file using the artificially generated numeric values as the z values as input parameter for the

new TIN as shown in

www.manaraa.com

24

Table 2.

Table 2: Input data to create a hydrologically corrected TIN surface. This table shows which
datasets served as input parameters for the construction of raster surface models. Column one
lists the data set name, column two shows which value from the attribute table contributed
elevation values for raster creation, and column three lists the ArcGIS parameter name, where
mass point contribute are evaluated as TIN nodes, hard lines contribute z values with no TIN
interpolations occurring across the line, and hard replace replaces any TIN values bound
withing the polygon.

Feature Class Z values Used Input Type

LiDAR points Attribute z Mass Point

Stream Division Points Attribute z Mass Point

Stream None Hard Line

Storm Water Facilities
Buffer

Attribute z Hard Replace

Bounding Polygon None Hard Clip

4.4 LOAD TIN COMPONENTS

ITSMHydro requires the extraction of the TIN geometry as points, triangles, and triangle

edges into the feature dataset. The Python/geoprocessing tool

0_LoadDataFromTINToGeoDataBase.py (Appendix 1) automates the TIN component extraction

process and ensures the correct naming conventions for nodes, triangles, and edges required by all

www.manaraa.com

25

ITSMHydro tools. Input parameters for the 0_LoadDataFromTINToGeoDataBase.py tool include

the path to the TIN and the path to the feature data set. 0_LoadDataFromTINToGeoDataBase.py

also requires the user to set the output feature classes coordinate geometry resolution equal to the

precision of the original LiDAR data, thus guaranteeing all node geometries are coincident (ESRI

2010).

0_ LoadDataFromTINToGeoDatabase.py extracts feature classes called nodes, edges, and

triangles from the TIN and stores them in the feature dataset using ArcGIS methods available in

Python using the ArcGIS Application Programming Interface. After importing the required

ArcGIS libraries, 0_LoadDataFromTINToGeoDatabase.py loads the required ESRI 3D analyst toolset

into Python. Prior to execution, the user must define the script variables for the working

directory, the path to the feature dataset, the x, y, z resolution, and the path to the TIN. The

resolution settings shown in Appendix A were set to a precision that matched the LiDAR point

text files recorded in hundredths of feet. Finally, the TIN edges (TIN triangles as lines) , TIN

nodes (the LiDAR bare-earth sample points), and the TIN triangles are extracted from the TIN

and stored in the feature dataset as ESRI point, line, and polygon vector data models.

www.manaraa.com

26

Figure 6: The working directory after
0_
LoadDataFromTINToGeoDatabase.py
execution.

Figure 7: The resulting edge and node feature
classes generated by
0_LoadDataFromTINToGeoDatabase.py.

4.5 TIN FLOW DIRECTIONS

The second algorithm 1_FlowDirectionsFromTIN.py (Appendix B) utilizes the node and edge

components from a TIN surface model to generate a new feature class called FlowDirections. Figure

8 shows an abridged version of the processing steps of 1_FlowDirectionsFromTIN.py. The resulting

FlowDirections feature class represents the steepest path of descent from each node to its adjacent

neighbors as defined by the triangulation.

www.manaraa.com

27

Figure 8: An overview of the processing steps of 1_FlowDirectionsFromTIN.py.

For each LiDAR point, the feature geometry and the x, y, and z values are written to a

Python list data type. Similarly, the feature geometry of all edges are written to another Python list

(the line‟s start node and end node coordinate values). For each LiDAR point, every line that

shares a coordinate value equal to the LiDAR point is connected to that LiDAR point. Lines with

a distal-end z value higher than the LiDAR point‟s z value cannot represent flow away from that

LiDAR point and are ignored. If the line‟s distal-end z value is lower than the z value of the

www.manaraa.com

28

LiDAR point, that line represents a potential flow path away from the LiDAR point. The distance

formula (equation 1) is used to calculate the edge length based on the line‟s start and end node x

and y values. The line‟s z values are used to calculate a rise by subtracting the higher z value from

the lower z value, which is then converted into the percent slope (equation 2). The percent slope

value of each line is appended to the Python list of edge coordinate values.

d = distance

(x1, y1) = coordinate geometry of node.

(x2, y2) = coordinate geometry of opposing line end.

Equation 1 The distance formula for calculation the distance between two coordinates.

Equation 2 Formula for calculating the percent slope of a line where run is the value of d from
equation 1.

The list of lines that represent potential flow paths away from the LiDAR point are sorted

in ascending order based on the percent slope value. The last item in the list is that line with the

steepest path of descent away from the LiDAR node. The coordinate geometry associated with

these steepest path lines is converted to a new feature class in the geodatabase called FlowDirections.

The resulting FlowDirections feature class represents lines of the steepest path of descent from each

node to its adjacent neighbors defined by the Delaunay triangulation. After code execution, the

www.manaraa.com

29

working directory will contain the feature classes detailed in Figure 9, including the newly created

FlowDirections feature class (Figure 10).

4.6 TIN DTM BASIN DELINEATION

Given the flow direction outputs of the 1_FlowdirectionFromTin.py tool, an algorithm is

used to generate a polygon boundary that encapsulates those flow direction lines that share

connectivity, and therefore represent a catchment boundary for those connected flow direction

Figure 9: Shows the contents of the
working directory after execution of
1_FlowDirectionsFromTIN.py.

Figure 10: The flow direction lines generated by
1_FlowDirectionsFromTIN.py.

www.manaraa.com

30

lines. The algorithm 2_CreateCatchmentPolygons.py (Appendix C), utilizes the node, edge, and

triangle components of the TIN, and the newly generated FlowDirections feature class, to generate a

new polygon feature class called Catchments. Those areas bound by the resulting Catchments

feature class represent those areas that contribute to overland flow to a single pour point. Figure

11 shows an abridged version of the processing steps executed by 2_CreateCatchmentPolygons.py.

Figure 11: An overview of the geoprocessing steps of 2_CreateCatchmentPolygons.py.

A Python list stores the coordinate geometry of each flow direction line. Using the Extract

Line Vertices to Points method in ArcGIS, all line end nodes and start nodes are exported to two

www.manaraa.com

31

new point feature classes. Any end point that is not coincident with a start point represents the

location of a pour point for that catchment. These points are selected from the feature class of

vertices and their feature geometry is written to a new Python list. The list of points are sorted in

ascending order based on z values. For each point item, all lines that intersect that pour point are

assigned a catchment ID integer value starting with one. The coordinate values of these lines are

passed into a Python function that identifies any connected upstream lines. This process is

repeated recursively, thereby „walking up‟ each branch of the Flow Direction geometry, assigning the

same catchment ID to each branch of the flow direction lines. After all connected flow direction

lines are assigned the same catchment ID value for that pour point, the next pour point is selected

from the pour point list, one is added to the catchment ID, and the process repeats until all lines

have been assigned a catchment ID. Based on the catchment ID, a new feature class is created

called FlowDirections_CatchmentGrouped (Figure 12).

www.manaraa.com

32

Figure 12: The grouped flow
direction lines generated by
2_CreateCatchmentPolygons.py.

Figure 13: The areas in
purple show those areas that
exist on the periphery of any
group of flow direction lines
and represent those areas
that contain catchment
boundaries. The lines shown
in gray are the Voronoi
polygons generated from the
vertices of the purple area.

Figure 14: Final catchment
delineations and grouped
flow directions lines.

The FlowDirections_CatchmentGrouped feature class is spatially joined with the TIN triangle

polygons using the ArcGIS spatial join method. A resulting attribute of the spatial join is a join

count, which holds the number of FlowDirections_CatchmentGrouped features each triangle touches.

Any triangle that intersects only one FlowDirections_CatchmentGrouped feature has a join count of

one, any triangle that is adjacent to more than one FlowDirections_CatchmentGrouped feature has a

join count of two or more. Join counts greater than one indicate triangles that exist on the

periphery of two or more basins. The vertices of triangles with join count greater than one are

converted to Voronoi polygons (Figure 13). The Voronoi polygons are then spatially joined to

FlowDirections_CatchmentGrouped feature class and dissolved based on the basin ID values. The

www.manaraa.com

33

resulting feature class called Catchments defines catchment boundaries around each group of

connected flow lines (Figure 14). After code execution, the file geodatabase will show the feature

classes detailed in Figure 15; users can define a setting in 2_CreateCatchmentPolygons.py to delete

temporary files no longer required by ITSMHydro (Figure 16).

Figure 15: Working directory showing all files
generated by 2_CreateCatchmentPolygons.

Figure 16: A user defined setting in
2_CreateCatchmentPolygons.py will delete
temporary files from the working directory no
longer required by ITSMHydro.

4.7 SINK PROCESSING

LiDAR data may contain spurious pits or sinks, i.e., nodes that have a z value lower than

the surrounding LiDAR points and, therefore, have no connected outflow path. The algorithm

3_AggregateSinkCatchments.py (Appendix 4) merges those sink polygons with adjacent basin

www.manaraa.com

34

polygons by assuming that all sink catchments will puddle, fill to capacity, then pour into one of

the adjacent polygons based on the path of least resistance defined by the triangle edges. A sink

catchment is defined as any catchment delineation that does not intersect the bounding polygon.

Sink catchments are merged with one-and-only-one adjacent catchment. Figure 17 shows an

abridged version of the processing steps executed by 3_AggregateSinkCatchments.py.

Figure 17: An overview of the geoprocessing steps executed by 3_AggregateSinkCatchments.py.

3_AggregateSinkCatchments.py first identifies any polygon that forms an annulus and deletes

the feature geometry of the interior portion of the annulus and the catchment delineation that fills

the inner portion of the annulus. All lines that cross the catchment boundaries are selected from

the data set of edge lines, and the feature geometry of those edge lines are written to a Python list.

The lines that cross catchment boundaries are spatially joined with the basin Object ID, resulting

www.manaraa.com

35

in two values: the catchment ID from which the edge line originates and the catchment ID to

which the edge line flows. Any line that originates and terminates in the same catchment is

removed from further computations. From the remaining lines, that line which has the lowest z

value out of the catchment is selected as the flow path away from the sink polygon (Figure 18).

Figure 18: This surface has two sinks. The
yellow lines are those edge lines with a
direction of flow away from the sink. The red
lines are the first path water would take out
of the sink if the sink were filled with water.

Figure 19: The final delineation is called
catchments in the working directory. The
catchment delineation shown in figure 18
was renamed to catchments1. All
numerically numbered catchment feature
classes are retained in the working directory.

www.manaraa.com

36

If there is more than one line that has the same lowest z value, that line with the steepest

path as defined by the line‟s slope is selected as the steepest flow path. A new Python list is

generated to store the ID of the sink and the ID of the catchment that receives its flow. The sink

with the lowest z value flow path is assigned a nominal identifier; the neighboring recipient basin

is assigned the same nominal identifier. This process is repeated recursively until all connected

polygons have been assigned the same nominal identifier. This recusion process loops until

allpolygons have been assigned a nominal value. All polygons that have the same nominal value

are dissolved together. The feature class called Catchments is renamed Catchments n, and this

process loops until all catchment polygons touch the user-defined bounding polygon. The final

feature class defining catchment boundaries is called Catchments (Figure 19). For each iteration, a

feature class called Catchments n is written to the geodatabase (i.e., Catchments 1, Catchments 2,

Catchments 3…). After code execution, the file geodatabase will show the feature classes detailed

in Figure 20 (see Figure 21 for file structure with the “delete temporary files” setting invoked).

www.manaraa.com

37

Figure 20: Working directory showing all files
generated by 3_AggregateSinkCatchments.py.

Figure 21: Working Directory showing all
files generated by
3_AggregateSinkCatchments.py using the
“delete temporary files” setting.

4.8 RASTER DTM CREATION AND BASIN DELINEATION

 This sub-section details the methods used to create raster DTMs and delineate catchment

boundaries from LiDAR data using the raster-based geoprocessing tools in the ArcGIS 9.3

ArcHydro extension. Different pixel cell size and interpolation method combinations are used to

identify which raster surface model produced the highest-quality raster DTM for the purpose of

evaluating the ITSMHydro catchment delineation tools detailed in sections 2.2 – 2.5. The LiDAR

points were used to create an ESRI Terrain data model. From that terrain data model, eight ESRI

Grid surface models were created using five different pixel sizes and two different interpolation

methods available in the ArcGIS v 9.3 software package (Table 3). While there are many different

types of interpolation algorithms, the natural neighbors and the linear interpolation methods were

selected because these two interpolation methods are default parameters for the ESRI Terrain to

Raster conversion tool.

www.manaraa.com

38

Table 3 Surface model cell resolutions and interpolation methods. Column one lists the pixel
resolution, column two details the interpolation method used to transform LiDAR points into
regular tessellations, and column three shows which surfaces were used a comparisons against
the ITSMHydro toolset.

Raster Grid
Resolution/Cell Size

Interpolation Method
Used For

Catchment
Delineation

30-feet Linear Yes

30-feet Natural Neighbor Yes

6-feet Linear No

6-feet Natural Neighbor No

3-feet Linear Yes

3-feet Natural Neighbor Yes

1-foot Linear No

0.5-feet Linear No

A root mean square error (RMSE) calculation was performed on each dataset to quantify

elevation precision and, therefore, determine the highest quality watershed delineation. The

RMSE value determines the average difference between the interpolated pixel values of the surface

model and the elevation values of surveyed locations (Wu 2008). The surveyed sample points used

for the RMSE calculations included 63-point locations with surface elevation values determined by

professional survey.

www.manaraa.com

39

Equation 3 Root Means Square Error equation to determine the average difference between the
interpolated cell values and surveyed point elevation values where X1 represents the interpolated
pixel value at the surveyed elevation location of X2, and n represents the total count of surveyed
locations.

.

Storm water facility buffers were converted to a 3-foot raster Grid surface model and

assigned an elevation value equal to the minimum value of the entire LiDAR dataset. The pixel

values of the storm water facility Grid were used to computationally replace the coincident pixels

in the surface models, thereby establishing a connective flow path across the “obstruction” created

by the raised roadbeds.

The hydrography vector lines were manually edited to ensure that, for each individual line

segment, the line direction of flow matched the direction of flow detailed in the Lummi Nation

Storm Water Inventory. The ESRI ArcHydro geoprocessor cannot calculate flow directions in a

network of looping flow paths, for example braided streams or interconnected drainage ditches

(Maidment 2002). For this reason, some hydrography lines had their uphill node disconnected

from the network of flow paths to ensure that no flow line formed closed loops.

The resulting „culvert burn‟ surface model and the non-looping hydrography data set were

imported into an ArcHydro geodatabase. The ArcHydro database allowed the stream network

(hydrography) to be „burned‟ into the surface models, enforcing flow connectivity based on the

configuration of the stream network (Maidment 2002). The resulting hydrologically-corrected

www.manaraa.com

40

surfaces were filled using the ArcGIS fill function to remove sinks and obstructions from the

surface models that might impede the analysis.

The filled surface models were used to generate flow direction surfaces detailing the flow

direction from each cell to one of its eight adjacent neighbors (Figure 22). The flow direction

surfaces were then used to generate a flow accumulation surface where the numeric value of each

pixel represents the total count of individual cells that flow into that cell (Figure 23). The flow

accumulation surfaces were used to generate watershed boundaries where all cells that share a pour

point are assigned unique nominal numeric value (Figure 24). The basin output was transformed

from its Grid format into a polygon data structure.

Figure 22: A typical flow
direction surface detail. Each
cell stores a numeric value
detailing the flow direction in
one of eight cardinal
directions.

Figure 23: A typical flow
accumulation surface detail;
each cell stores the count of
cells that pour into that cell.
Higher cell counts are
displayed as a darker blue.

Figure 24: Resulting
catchment boundaries
generated from a 3 ft. natural
neighbor DTM.

www.manaraa.com

41

4.9 Comparative Metrics for Catchment Polygons

 Three different comparative metrics were used to quantify the differences in catchment

delineations between the raster-based catchments and the ITSMHydro delineations: (1) percent

difference, which highlights differences in area (Equation 4); (2) coefficient of area correlation,

which expresses difference in footprint surface areas (Equation 5); and (3) the isoperimetric

quotient, a measure of the length of the line for polygons with normalized areas (Equation 6).

The coefficient of correspondence (CA) is a measure of areal association between two polygons as

the ratio of the area of the intersection divided by the area of the union (Taylor 1977). If two

polygons are identical in shape and coincident, the CA will be one, if two polygons do not

intersect, the CA will be zero.

Equation 4: Formula to calculate percent difference between catchment areas.

Equation 5: The formula for calculating the coefficient of area correspondence as expressed as
the ratio of the area of the intersections of two polygons over the area of the union of two
polygons.

www.manaraa.com

42

With the exception of areas and perimeters, there are a limited number of empirical metrics

available to quantify the differences in the shapes of two asymmetrical polygons. The isoperimetric

quotient (IQ) of a polygon provides one method to quantify a polygon‟s perimeter with respect to

the polygon‟s area and is defined as the ratio of the polygon area to the area of a circle with same

perimeter as the polygon where a perfect circle has an IQ of 1 (Equation 6;Osserman 1978). The

isoperimetric quotient was used as an inverse indicator of two catchments relative „sinuosity‟, or

the amount of curves and bends formed by the line defining each polygon‟s perimeter. In other

words, if the ITSMHydro catchments, and the raster-based catchments have a similar shape, and

the isoperimetric quotient values were different, the catchment with the lower isoperimetric

quotient value had more perimeter for the area it encloses.

Equation 6: The formula for calculating the isoperimetric quotient as an indicator of the
sinuosity of the catchment polygon.

www.manaraa.com

43

Section 5: Results

This section presents maps showing the resulting catchment delineations for four test areas

and the results of the comparative metrics used to identify differences between the raster-based

catchment delineation method and the ITSMHydro vector-based catchment delineation. The test

areas were selected represent areas which required the least amount of surface reconditioning and

small enough in area to be processed by the ITSMHydro toolset.

Subsection 5.1 details the results of RSME analysis for eight different raster surfaces

generated from LiDAR bare-earth sample points. Subsection 5.2: Maps showing four different

catchment delineations from natural -neighbors-interpolated raster DTMs overlaid with four

ITSMHydro interpolations. Subsection 5.2.1: A number of comparative metrics are presented,

including differences in catchment areas, differences in catchment perimeters, percent difference

in areas, the coefficient of correspondence, and the isoperimetric quotient for each test area.

5.1 Raster Catchment Delineation and RMSE Analysis Results

Table 4 lists the results of the RMSE analysis for eight raster surfaces generated from LiDAR bare

earth sample points using different pixel resolutions and interpolation methods and for a TIN

derived from the LiDAR bare-earth sample points.

www.manaraa.com

44

Table 4 also lists the RMSE value for a USGS 7.5-minute ten-meter DEM to highlight the accuracy

gain of the LiDAR collection process over traditional stereophotogrammetric methods for surface

model generation. The RMSE value represents the average difference between the surface models

elevation values at surveyed elevation points. As shown in Table 4, the RMSE for all surface

models generated using natural-neighbors interpolation were slightly lower than the RMSE values

for surface models generated using linear interpolation, indicating that natural-neighbors

interpolation produces higher quality surface models for these LiDAR data. The highest RMSE

value is associated with the USGS ten-meter surface model, indicating that this is the lowest

quality surface model.

The LiDAR data has a sample density of approximately 1126 points/1000 ft2 over the

entire study area. The higher RMSE values for coarser pixel surface models are expected since

pixel values are subject to LiDAR point averaging during the interpolation process. The LiDAR

sample density most closely matches the surface area of the three-feet-pixel raster surface model

that returned the lowest RMSE values, indicating that the three-feet-pixel surface model is less

subject to error introduce by interpolation. For pixels smaller than three feet, the pixel area is less

than the LiDAR sample density, and therefore, each pixel value relies more heavily on the

interpolation. The 3-foot pixel (nearest neighbor interpolation) raster surface model had the

lowest RMSE and was used to generate catchments to compare with the LiDAR TIN-generated

catchments.

www.manaraa.com

45

5.2 ITSMHydro Catchment and Raster Catchment Delineation Comparison and

Analysis

 Figure 25 through 29 show the resulting catchment delineations generated by ITSMHydro

compared to a 3 ft. natural neighbor raster DTM catchment delineation. For test area 4, the

Onion Creek watershed, the number of LiDAR sample points contained too many points to

Table 4. Surface model Root Mean Square Error values based on pixel sizes and
interpolation methods where the RMSE value represents the average distance between
known surveyed elevations and the interpolated pixel values. Each row in this table
represents a raster surface model generated from bare earth LiDAR sample points. Each
raster has either a different pixel size or using a different interpolation method. The
RMSE for the USGS 10-meter is based on photogrammetric techniques resulting in a less
precise surface model. Notice the RMSE column: for all LiDAR-based surface models the
RMSE decreases as the pixel size decreases, up to 1-foot. Additionally, the RMSE for all
natural neighbor interpolations are slightly lower than the linearly interpolated surfaces.
Also shown (“TIN”) is the RMSE of the LiDAR sample points as reported by the LiDAR
vendor, TerraPoint.

Surface Model Resolution Interpolation Method RMSE (feet)

USGS 10-meter Unknown 6.583

30-feet Linear 1.478

30-feet Natural Neighbor 1.473

6-feet Linear 1.393

6-feet Natural Neighbor 1.388

3-feet Linear 1.393

3-feet Natural Neighbor 1.387

1-foot Linear 1.390

0.5-feet Linear 1.469

TIN Delaunay Triangulation 0.102

www.manaraa.com

46

process by ITSMHydro (see discussion for more details on processing times and limitations). For

test area 4, to highlight issues related to less dense LiDAR point spacing, a number of LiDAR

points were randomly selected using a random number generator to approximate the pixel count

as a 30-meter pixel raster for the same area; those points were processed through ITSMHydro. For

each test area, a number of comparative metrics were calculated to highlight catchment differences

resulting from differences in data type (Table 5). For test areas 1, 3, and 4, the ITSMHydro

catchments were smaller that the raster catchments, with PD ranging from -83.97% to -3.09%;

only test area 2 returned a slightly larger relative percent difference in area (9.39%). The CAC, a

measure of overlap between the raster and ITSMHydro catchments (with value of 1.0 indicating

complete overlap), ranged from 0.28 to 0.80. Finally, the IQ, a measure of a catchment's area

relative to its perimeter (an IQ of a perfect circle is one and a lower IQ value indicates greater

boundary complexity), was lower for ITSMHydro catchments in 3 of 4 test areas, with the 4th

being virtually identical (Test Area 1); IQ ranged from 0.13 to 0.26 among ITSMHydro

catchments and from 0.21 to 0.37 among raster catchments.

www.manaraa.com

47

Figure 25: Test area 1 catchment comparison between the ITSMHydro delineation and a 3 ft. NN raster
DTM delineation using all available LiDAR points.

www.manaraa.com

48

Figure 26: Test area 2 catchment comparison between the ITSMHydro delineation
and a 3 ft NN raster DTM delineation using all available LiDAR points.

www.manaraa.com

49

Figure 27: Test area 3 catchment comparison between the ITSMHydro delineation and a
3 ft. NN raster DTM delineation using all available LiDAR.

www.manaraa.com

50

Figure 28: Test area 4 catchment comparison between the ITSMHydro delineation and a 30 ft NN raster
DTM delineation using a LiDAR point appoximatly equal to the pixel density of a 30 ft pixel DTM.

www.manaraa.com

51

Table 5: Comparative metrics for ITSMHydro and raster catchment delineations. Four
different three-feet natural neighbors interpolated raster catchment delineations are compared
against four ITSMHydro delineations. For each delineation, the area and perimeter measures
of each catchment polygon are shown below with the area values used as inputs to calculate the
relative percent difference in area. For test areas 1, 3, and 4, the ITSMHydro catchments were
smaller that the raster catchments, with test area 2 returning a slightly larger relative percent
difference in area. The CAC values show the ratio of the area of the intersection over the area
of the union of both the raster and ITSMHydro catchments. A CAC value of 1.0 would
indicate that both catchment delineation methods returned exactly the same catchment
polygons, a value of 0.5 would indicate that 50 percent of both polygons could be described as
occupying the same space. Therefore, a lower CAC value indicates a greater difference in shared
area and a higher CAC value indicates more similarity in shared area. The IQ values for each
catchment measure the amount of area relative to the length of its perimeter. A perfect circle
would return an IQ value of one and a lower IQ value, when compared to a polygon of similar
shape, indicates that the polygon with the lower value has more perimeter for the area it
occupies. Only test area 1 returned nearly identical IQ values, with all other ITSMHydro
catchments returning lower IQ values than the raster catchments, suggesting that the
ITSMHydro catchments formed boundaries that are more complex.

Test Area
Delineation

Method
Area

(sq. ft.)
Perimeter

(feet)

Percent
Difference in

Area (PD)

Coefficient of
Areal

Correspondence
(CAC)

Isoperimetric
Quotient

(IQ)

Test Area 1
ITSMHydro 239,381.9 3,716.4

-83.97 0.28
0.22

3 ft. NN Raster 585,854.5 5,914.2 0.21

Test Area 2
ITSMHydro 104,312.5 2,249.7

9.39 0.80
0.26

3 ft. NN Raster 94,954.7 1,789.4 0.37

Test Area 3
ITSMHydro 45,923.0 2,122.2

-38.15 0.51
0.13

3 ft. NN Raster 67,570.5 2,010.9 0.21

Test Area 4
ITSMHydro 34,085,641.5 44,813.2

-3.09 0.79
0.21

30 ft. NN
Raster 35,156,334.1 36,898.7 0.32

www.manaraa.com

52

Section 6: Discussion

This sections details limitations and sources of error for the ITSMHydro toolset and the

implications of those tool limitations on catchment delineations. Subsection 6.1 discusses the

implications of the RMSE analysis for raster surface creation for different interpolation methods

and pixel size. Subsection 6.2 discusses the percent difference in area, coefficient of aerial

correspondence, and the isoperimetric quotient values calculations. Subsection 6.3 discusses the

processing time differences between the raster-based catchment delineations and the ITSMHydro

catchment delineations. Subsection 6.4 explains the necessity of the bounding polygon prior to

ITSMHydro code execution and the errors that can result from a poorly defined bonding polygon.

Subsection 6.5 discusses how inconsistencies between irregular tessellations (TIN and Voronoi

diagrams) can result in flow direction lines that cross or intersect catchment boundaries.

Subsection 6.6 discusses the problems associated with model verification.

6.1 RMSE Analysis of Interpolated Surfaces

 Table 4 shows the RMSE values for a number of raster surface models generated from the

LiDAR data and is consistent with the literature in that raster surface models are affected by a

number of different factors including pixel size and interpolation methods (Garbrecht and Martz

2000); (Garbrecht; et al. 2001); (Haile and Rientjes 2005); (Jones 2002) . The USGS 10-meter

surface model is the product of aerial photogrammetry and human interpretation, and the RMSE

for this surface model showed the greatest difference between the pixel value and the surveyed

elevation data; it is, therefore, the lowest quality surface model when compared against other raster

surface models generated from LiDAR. Raster surfaces interpolated from LiDAR showed a

www.manaraa.com

53

substantial drop in RMSE relative to the 10-m surface model, indicating that the pixel values at all

survey elevation locations were more similar, supporting Garbrecht and Martz (2000) in that the

LiDAR data collection process results in higher quality surface data. For those surfaces generated

from LiDAR, as the pixel size decreased and approached the point density of the LiDAR data, the

RMSE decreased. This decrease in the RMSE as the pixel size decreased also supports the

literature by demonstrating that more course pixel surfaces are subject to rounding errors

(Garbrecht and Martz 2000). Furthermore, differences in RMSE between similar pixel sizes, but

different interpolation methods, indicates that the natural neighbors interpolation method

produces a higher quality surface model for these data.

 The three feet pixel surface models more closely matched the sample density of the LiDAR

data. Two surfaces were interpolated with pixel sizes smaller that the sample density of the LiDAR

data: a 1-foot pixel surface and a 0.5-foot pixel surface. For both the 1-foot and the 0.5-foot pixel

surfaces, the RMSE increased higher than the three feet natural neighbors‟ surface, suggesting that

the interpolation introduced error and degraded surface quality.

6.2 Raster – Vector Delineation Comparisons for Shape and Area

 ITSMHydro returned catchments that expressed variations in catchment areas, the extent

of those areas as measured by the CAC, and differences in IQ when measured against raster

delineation for the same area. Because those vector-based differences in delineation area and

delineation extent were neither consistently over nor under the areas and extent of those of the

raster-based approach suggests that the process of interpolation has an unpredictable effect on the

www.manaraa.com

54

quality of catchment delineation. Three test areas returned ITSMHydro isoperimetric quotient

values lower than the raster-based approach, suggesting that the raster-based approach has the

effect of smoothing the catchment boundary. This smoothing of the catchment boundary is

expected in a raster surface model since the pixel value is a generalize elevation value over the pixel

area as defined by the regular tessellation of the raster, and not defined by the discrete sample

point values. Test area one returned an ITSMHydro isoperimetric quotient slightly higher than

the corresponding raster catchment, but this may be due to the considerable difference in

catchment areas or because LiDAR sample points below the mean higher high water line were

removed from the analysis to reduce file sizes and speed processing times resulting in poorly

defined boundaries along the shoreline.

6.3 ITSMHydro Processing Times and File Size Limitations

Processing times for ITSMHydro were significantly longer that the processing times of the

raster-based approach. The three-feet pixel raster surface model contained approximately 111

million pixels, and it was possible to fill sinks, create flow direction lines, and generate catchment

delineations for the entire surface area in approximately 36 hours of computer processing time.

ITSMHydro took approximately 30 hours to process a 120,000 node TIN. As the number of

LiDAR points increases, the demands on the computer‟s processor and available memory

increases, thereby increasing the processing times as detailed in Table 6. Graphs showing the

processing time for each tool.

www.manaraa.com

55

Table 6: Number and type of feature geometry iterations required by each ITSMHydro tool.
The ITSMHydro tools rely on iterations of the point X, Y, Z data stored in arrays, where an
iteration is defined as a computational „visit‟ to each member of the array, and a comparison of
those values to line geometries stored in different arrays. Increasing the number of LiDAR
points in the data set increases the demand on the computer‟s processor and available memory,
thereby increasing processing times. For each LiDAR point, the create Flow Direction Lines
tool requires a visit to the LiDAR point, and a visit to every edge line to evaluate whether that
line intersects that point. The Create Basin Boundary tool, and the Aggregate Sinks tool also
utilize iterations of the data, but also use recursive functions resulting in two or more iterations
occurring simultaneously, thus compounding the demands on the computer‟s processor and
memory. Furthermore, Aggregate Sinks needs to execute x number of times where x is the total
number of sinks bound within sinks. Column 2 in the table below show the number of
iterations required for each tool and column 3 summarizes the iteration type. Since Create
Flow Direction Lines only require simple iterations of the data, this tools executes faster than
both the Create Basin Boundary, which is executing multiple iterations simultaneously, or
Aggregate Sinks, which is executing multiple iteration simultaneously and repeatedly until all
sinks have been assigned to a catchment.

ITSMHydro Tool Iteration Count Iteration Type

Create Flow Direction
Lines

node count * edge count Iterator

Create Basin Boundaries (pour point count * flow direction
line count) + (branch count flow
direction line count)

Iterator and Recursion

Aggregate Sinks ((sink count * edge count) +
branch count * edge count))*
maximum number of nested sinks

Looped Iterator and
Recursion.

The ITSMHydro tools utilize iterators to evaluate connections between LiDAR points

(nodes) and edge line or flow direction lines. Point and line X, Y, and Z values are stored in

matrices within the computer‟s memory and each point or line is „visited and evaluated‟ for

connectivity using iteration of the features geometry stored in arrays. Each LiDAR point (node)

evaluated by the Create Flow Directions tool requires an iteration of every edge, to determine if

that edge intersects that node.

www.manaraa.com

56

Figure 29: Processing time for the Create Flow Direction tool. This graph shows the processing
time required to generate flow direction lines from a TIN with x number of nodes on a 2.93
Ghz Duo Core processor with 4 GB of RAM. Because this tool relies on the iteration of two
arrays, the processing time is largely linear with respect to node count. The initial curve from 0
– 4.5 minutes on the y-axis likely results from the time required to initialize the Python
interpreter, load required code libraries, and establish the connection to the ArcGIS
geoprocessor.

Figure 30: Processing time for Create Basin Boundaries. This graph shows the processing time
required to generate catchment boundaries for a TIN with x number of nodes on a 2.93 Ghz
Duo Core processor with 4 GB of RAM. The time required to process a 125,000 node TIN is
about 5 hours, demonstrating the computational burden of this type of recursive iteration.
Processing TINs greater than 125,000 nodes resulted in out-of memory errors; it is likely the
line of this graph would more clearly define an exponential function due to the added processor
and memory burdens of additional points.

0

2

4

6

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

Processing Time
(min.)

LiDAR Node Count

ITSMHydro Create Flow Direction Lines Processing Times

0

100

200

300

400

0 20,000 40,000 60,000 80,000 100,000120,000140,000

Processing Time
(min.)

LiDAR Node Count

ITSMHydro Create Catchment Boundaries Processing
Times

www.manaraa.com

57

Figure 31. Processing times for Aggregate Sinks. This tool requires the most processing time,
requiring almost 20 hours to aggregate sink catchments generated from a 125,000 node TINs on
a 2.93 Ghz Duo Core processor with 4 gb of RAM. Processing times for this tool are
substantially longer than the Create Catchments tool, requiring almost 20 hours, demonstrating
the computational burden of this type of looped recursive iteration. Processing TINs greater
than 125,000 nodes resulted in out-of-memory errors. It is likely the line of this graph would
more clearly define an exponential function due to the added processor and memory burdens of
additional points. Presumably, processing time is related to topographic relief where a LiDAR
data set from a mountainous area would produce catchments with less sink areas, requiring
fewer loops and thus speeding processing times.

For the Create Basin Boundary tool, each pour point requires an iteration of each flow

direction line to determine if that flow direction line connects to that pour point. If a line is

found to connect to the pour point, that line is evaluated and any flow direction line that connects

to that line is evaluated until every line connected to the pour point is identified. Since this type

of tree-spanning algorithm requires recursion, functions that call themselves, and since these

recursive iterations of the arrays occur simultaneously in RAM, the Create Basin Boundary tool

demands a significant amount of processing resources.

0

200

400

600

800

1,000

1,200

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000

Processing Time
(min.)

LiDAR Node Count

ITSMHydro AggregateFill Sinks Processing Times

www.manaraa.com

58

 The Aggregate Sinks tool functions similarly to the Create Basin Boundary tool in that it

also relies on recursive iterations to define those sinks that share hydrologic connectivity. Create

Basin Boundary is a further burden on the computer processor since this tools needs to execute

multiple times (loop) until all sinks, or sinks within sinks, are assigned and aggregated into single

catchments. Because of these computational demands, ITSMHydro is limited in the number of

LiDAR nodes it is able to process. A 150,000 node TIN surface failed to process on the Create

Basin Boundaries tools and returned an error message that the computer was out of memory.

Presumably, improvement in computer processing speeds and RAM will improve the performance

of the ITSMHydro tools.

6.4 Bounding Polygon Considerations

The TIN generation process will create triangles on the periphery of the TIN that satisfy

the definitions of a Delaunay triangulation but may form erroneous connections between two

pour points for two discrete catchments. ITSMHydro exports all edge lines for all tessellations,

and edge lines on the periphery of the TIN can extend a significant distance between sample

points. Error! Reference source not found. shows the triangle edges and nodes outputs from a

TIN using ArcGIS. The gray area to the left of the red line shows examples of some triangles and

edges that could potentially skew the resulting flow direction calculations. If one of those lines

erroneously formed a connecting edge line between two catchment pour points, ITSMHydro

would evaluate that line as flow direction line, thereby merging two adjacent catchments and

resulting in an over-estimation of catchment area. For example, if the nodes labeled A and B in

Figure 34 are pour points for two distinct catchments, and point A was slightly higher in elevation

www.manaraa.com

59

then B, and the line A-B is not excluded by the bounding polygon, then ITSMHydro would

recognize the line A-B as a valid flow direction line away from A resulting in a merging of the two

catchments formed upslope of pour point A and B.

Figure 32: A hypothetical TIN where the edge lines on the periphery of the TIN connect
node a substantial distance apart. The bounding polygon (shown in red) must only capture
those areas considered for flow direction lines. A line shown above as A – B, if not excluded
by a properly defined bounding polygon could define a flow direction line that joined two
pour points A and B resulting in the joining of two different catchments.

A

B

www.manaraa.com

60

6.5 Flow Directions Lines and Catchment Delineations

All flow directions lines generated by ITSMHydro are coincident with the triangulation

lines. The generation of the catchment

boundary relies on the creation of a

Voronoi diagram from those nodes that

exist on the leaves of the outermost

branches of the flow direction network.

While the Delaunay triangulation

and the Voronoi diagram share a

geometric relationship in that the nodes

bound by adjacent Voronoi polygons are

connected by the TIN lines that connect

those nodes, the Voronoi diagram and the

TIN are different geometric objects. This

reliance on difference geometries will

result in flow direction lines across

catchment boundary lines, or that are coincident with catchment boundary line segments (Figure

33). As such, either there is a slight error in estimations in catchment areas, or the flow direction

lines do not represent the true flow path. Whether the catchment areas are erroneous, or the flow

lines are erroneous is based on which premise is accepted, in other words whether the Delaunay

triangulation or the TIN is the primary geometry. Accepting one geometry over the other, and

Figure 33: Showing an example of flow direction
lines that cross or intersect the catchment
boundary.

www.manaraa.com

61

altering the algorithms to adjust the line work, or redeveloping the algorithms to utilize only one

geometry type would solve the problem of inconsistent flow lines and catchments.

6.6 Discussion on model validation

ITSMHydro flow directions and catchment outputs were verified using an artificial dataset

with a large range of topographical relief and well-defined catchment boundaries prior to execution

using actual LiDAR data. ITSMHydro has not been validated beyond a comparison between the

catchment delineations generated using industry standard raster processing tools.

True catchment boundaries involve complex interactions among topography, soils,

underlying geology, and vegetation cover. Extensive amounts of fieldwork surveying the elevation,

soils, geology and vegetation to determine a catchment line for model validation would likely

involve subjectivity, sample error, and enough uncertainty to invalidate field-delineation of a

catchment boundary for model validation.

Finding some impervious surface, for example a paved parking lot covered by LiDAR data,

that resulted in different raster vs. ITSMHydro catchment delineations, then measuring the

discharge from that area during a rain event would result in a discharge volume total. That

discharge volume may correlate with the discharge volume expected from one of the catchment

delineations, but any number of catchment boundaries may return that discharge volume and

would not provide conclusive proof that any calculated delineation was a sound delineation. It

may be possible to manufacture an artificial surface in a laboratory, find those areas where there

are differences in the catchment boundaries and measure which direction water flows to better

www.manaraa.com

62

determin the catchment in those areas. Repeated iterations of this experiment may provide

statistical evidence that one delineation method is superior.

www.manaraa.com

63

Section 7 Conclusion and Future Work

This work involves a number of algorithms generated in the Python programming language

that interface with ESRI‟s ArcGIS to delineate catchment boundaries from LiDAR bare-earth

sample points that are not constrained by the limitations imposed by the raster surface model.

LiDAR sample points are transformed into a TIN surface model and the TIN geometry are

extracted from the TIN as point, triangle polygon, and polygon line ESRI feature-dataset feature-

classes. The node, triangle and line feature classes serve as inputs into three different tools which

define flow directions from the lines based on the slopes between LiDAR nodes, define catchment

boundaries based on Voronoi polygons around connected flow direction lines, and aggregate areas

defined as sinks into final catchment delineations.

Historically, GIS users have transformed surface elevation data into raster-based surface

models for hydrologic modeling, including the delineation of flow direction lines, defining

catchment boundaries, and managing sink areas within the dataset. The raster-based surface

model, and the algorithms used to generate flow directions and catchments, are influenced by a

number of factors inherited by the pixel data structure. Pixel values are subject to error by raster-

interpolation, filling algorithms result in areas of data loss, and flow directions are constrained by

the eight-cardinal directions dictated by the raster cell structure. These data structure constraints

can each influence flow directions and catchment delineations resulting in error.

The research presented in this thesis indicates that the LiDAR point data provided by

Terrapoint Inc. for the area on and near the Lummi Indian Reservation are of a sufficient sample

density and precision to define catchment boundaries using irregular tessellations to define the

www.manaraa.com

64

spatial adjacency of those points. This research indicates that ESRI TIN surface models represent a

higher quality dataset than traditionally-generated raster surface models, consistent with the

research of Garbrecht and Martz (2000). Delaunay-interpolated TIN surface models generated

from the LiDAR data returned much lower RMSE, proving theTIN data were of a higher quality

to any of the raster-interpolated surface models, supporting the literature that raster interpolation

introduces more error into the raster dataset (Mark (1984); O'Callaghan and Mark (1984); Mark

(1988); Fairfield and Leymarie (1991); and Gehegan and Lee (2000). Furthermore, this research

shows that the processing algorithms presented are sufficient for hydrologic modeling when those

data are transformed into irregular tessellations as demonstrated by the Voronoi flood modeling

work of Dakowicz and Gold (2007).

The algorithms presented produced catchment boundaries that varied in size and shape to

a raster-based catchment delineation. The ITSMHydro delineations ranged from substantially

smaller to slightly larger than raster delineations in the four different test areas, indicating the

surface-model-data-structure can have a dramatic impact on catchment delineations. These

algorithms also produced catchment boundaries with generally higher boundary complexity,

suggesting that a move away from the D8 flow direction algorithm (Maidment 2000) avoids any

generalization of the flow direction surface, thereby producing a more accurate catchment

boundary. While the ITSMHydro algorithms executed as planned, a number of issues could be

addressed to improve the overall utility of the ITSMHydro vector-based catchment delineation

tools, including an automated method of producing a bounding polygon, model validation, and

code optimization. The automated generation of the bounding polygon would remove the human

error associated with the construction of the bounding polygon and reduce the data preprocessing

www.manaraa.com

65

time need to prepare the data for ITSMHydro execution, resulting in high-quality delineations.

Validating the catchment delineations for both the vector-based and raster-based approach would

definitively determine the utility of the ITSMHydro tools. Additionally, there are number of code

alterations that, if implemented, could speed ITSMHydro execution times to make ITSMHydo a

more viable tool for hydrologic modeling.

ITSMHydro, like the ArcHydro toolset, only considers topography when delineating

catchment boundaries. Neither ITSMHydro nor raster-based approaches produce the true

catchment, since neither approach considers all the data necessary to capture the true catchment

boundary. However, it is relevant to evaluate which method most closely approximates the

catchment area. While there is no known method to definitively conclude that the vector-based

approach presented herein is superior to a raster-based approach, RMSE values indicate that the

TIN model generated from LiDAR points resulted in a remarkably improved surface model over

the raster-based surface model in terms of elevation accuracy. The ITSMHydro algorithms were

able to produce catchment boundaries for several test areas that demonstrate differences in areas,

location, and shape suggesting that the surface model has a significant influence on catchment

boundary delineation.

This work contributes to the field of geographic information sciences in a number of

different ways. Several original subroutines were developed to perform a number of tasks that

were previously unavailable to GIS professionals, including subroutines to collapse the inner rings

of donut polygons, reassign line from-to directions based on node z values, write line geometries to

feature class attribute tables, identify lines sloping away from points, dissolving single-part line

www.manaraa.com

66

features that share node connectivity, and recursive spatial selections. Given the lower relative

accuracy of raster-based surface models evident in the study area, the observed differences in size,

shape, and location between raster- and vector-based catchments suggest that use of the raster-

based approach may compromise accuracy in area, shape, and location of the resulting catchments.

A vector-based approach that maintains the integrity of the sample data is preferred, especially in

areas of low topographic relief with high sample point density . Since the TIN surface model more

closely matched surveyed elevation values, ITSMHydro catchments are better suited for producing

a more legally defensible catchment boundary and therefore, may affect jurisdictional

responsibilities with respect to water rights and other water resource-related issues. The file size

constraints limit application of the approach developed herein, however, at least until

technological advances and/or code revisions improve computer processing speed and file size

capacity. Most importantly, this research advances the growing field of geographic information

science by exposing the assumptions of historically accepted practices.

www.manaraa.com

67

Works Cited

Campbell, J. (2002). Introduction to Remote Sensing. New York, The Guilford Press.

de Berg, M., Cheong, O, van Kreveld, M, Oveermars, M (2008). Computational Geometry:
Algorithms and Applications. Santa Clara, CA.

Duke, G. D., Kienzel, S. W., Johnson, D. L., Byrne, J.M. (2003). "Improving overland flow routing
by incorporating ancillary road data into Digital Elevation Models." Journal of Spatial Hydrology
3(2): 26.

ESRI. (2010). "About TIN Surfaces." from
http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=About_TIN_surfaces.

ESRI. (2010). "File Geodatabase Resolution." from
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/feature_class_basics.htm.

ESRI. (2010). "Geodatabases." from
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/types_of_geodatabases.ht
m.

Fairfield, J. and P. Leymarie (1991). "Drainage networks from grid digital elevation models." Water
Resour. Res. 27(5): 709-717.

Garbrecht, J. and L. W. Martz (2000). Digital Elevation Model Issues In Water Resources
Modeling.

Garbrecht, J., F. L. Ogden, et al. (2001). "GIS and Distributed Watershed Models. I: Data
Coverages and Sources." Journal of Hydrologic Engineering 6(6): 506-514.

Gold, C. M., Remmele, P. R., Roos, T. (1989). Spatial adjacency - a general approach. Auto-Carto
9, Baltimore, Md, USA.

Gold, C. M., Remmele, P. R., Roos, T. (1997). Voronoi Methods in GIS. Algorithmic
Foundations of Geographic Information Systems. Berlin/Heidelberg, Springer. 1340/1997: 21 -
35.

http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=About_TIN_surfaces
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/feature_class_basics.htm
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/types_of_geodatabases.htm
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/types_of_geodatabases.htm

www.manaraa.com

68

Haile, A. T., Rientjes, T. H. M. (2005). Effects of LIDAR DEM Resolution in Flood Modeling:
A Model Sensitivity Study for the City of Tegucigalpa, Honduras. ISPRS WG III. Enschede, The

Netherlands.

Jones, R. (2002). "Algorithms for using a DEM for mapping catchment areas of stream sediment
samples." Computers & Geosciences 28(9): 1051-1060.

Maidment, D. (2002). ArcHydro, GIS for Water Resources. Redlands, Ca, ESRI Press.

Maidment, D. R. (2002). Arc Hydro, GIS for Water Resources. Redlands, ESRI Press.

Maidment, D. R., Djokic, D. (2000). Hydrologic and Hydraulic Modeling Support with
Geographic Information Systems. Redlands, ESRI Press.

Mark, D. M. (1984). "Automatic detection of drainage networks from digital elevation models."
Cartographica 21(2/3): 168-178.

Mark, D. M. (1988). Modeling Geomorphologic Systems. Chichester, John Wiley & Sons.

O'Callaghan, J. F. and D. M. Mark (1984). "The extraction of drainage networks from digital
elevation data." Computer Vision, Graphics, and Image Processing 28(3): 323-344.

Osserman, R. (1978). "The Isoperimetric Inequality." Bulliten of the Mathematical Society 84:
1182 - 1238.

Peucker, T. K., R. J. Fowler, et al. (2002). Digital Representation of Three-Dimensional Surfaces by
Triangulated Irregular Networks (TIN). REVISED.

Peucker, T. K., Fowler, Robert J., Little, James J., Mark, David M. (1977). The Triangulated
Irregular Network. D. o. Geography. Burnaby, Canada, Simon Fraser University.

Sack, R., Urruita, J (2000). Handbook of Computational Geometry. Amsterdam, Elsevier.

Taylor, p. (1977). Quantitative Methods in Geography. Tyne, United Kingdom, Waveland Press,
Inc.

Tobler, W. (1970). "A computer move simulating urban growth in the Detroit region." Economic
Geography 46(2): 234 - 240.

www.manaraa.com

69

Tucker, G. E., S. T. Lancaster, et al. (2001). "An object-oriented framework for distributed
hydrologic and geomorphic modeling using triangulated irregular networks." Computers &
Geosciences 27(8): 959-973.

Wehr, A. L. U. (1999). "Airborne laser scanning-an introduction and overview." ISPRS Journal of
Photogammetry and Remote Sensing 54: 68-82.

Wu, S., Li, J., Huang, G. (2008). "Characterization and Evaluation of Elevation Data Uncertainty
in Water Resource Modeling." Water Resources Management: 959-972.

www.manaraa.com

70

Appendix A- 0_LoadDataFromTINToGeoDataBase.py

try:
 print "Load data from TIN To ESRI File Geodatabase for ITSMHydro"
 import sys, arcgisscripting
 gp = arcgisscripting.create()
 gp.CheckOutExtension("3D")
 gp.workspace = TheWorkingDirectory
 gp.RefreshCatalog(TheWorkingDirectory)

 ###### User Defined Variables ##########
 TheWorkingDirectory = r"E:\Thesis\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro"
 TIN = r"E:\Thesis\ITSMHydro2011CorrectNames\TestData\testtin"
 gp.overwriteoutput = 1
 gp.ZResolution = "0.01"
 gp.XYResolution = ".01"
 ###

 print "Export TIN edges."
 Edges = "Edges"
 gp.TinEdge_3d(TIN, Edges, "DATA")
 print "Export TIN nodes."
 Nodes = "Nodes"
 gp.TinNode_3d(TIN, Nodes, "", "Tag_Value")
 print "Export TIN triangles."
 Triangles = "Triangles"
 gp.TinTriangle_3d(TIN, Triangles, "PERCENT", "1", "", "")
 print "\nFinished loading TIN Data."
except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with python"
 sys.exit()

www.manaraa.com

71

Appendix B- 1_FlowDirectionsFromTIN.py

#This script will take a scattered distribution of point and identify those
#lines that represent surface water flow paths based on a Delaunay Triangulation
#generated from those points.
#For each record in the feature class called node, those lines that intersect that node are identified.
#The line distance is calculated using the distance formula and a slope value
#is generated. For each node, the intersecting lines are sorted based on slope, the line with the steepest
#slope is writen to a new feature class. If more that one line have the same steepest slope, that line
#in the last sort position is returned.

#User Defined Variables ###
#The path to the feature dataset in a geodatabase
TheWorkingDirectory = r"E:\Thesis\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro"
#A path and name.txt of a text file, user must have write permission to this directory.
textfile = r"C:\Temp\ITSMHydroflowdirectionfromTIN.txt"
#1 to overwrite all geoprocessing outputs, 0 to not overwrite.
OverWriteOutput = 1
#The resolution of the origial point data
XYResolution = r".01"

print "Create Flow Direction lines from a TIN"
print"Created by Gerry Gabrisch. \nAugust 2009 gerry@gabrisch.us\n"
import sys, string, os, arcgisscripting, math, operator, exceptions, shutil, time
def GetTime(t):
 #Convert time to a readable format.
 theyear = t[0]
 themonth = t[1]
 theday = t[2]
 thehour = t[3]
 theminutes = t[4]
 theseconds = t[5]
 thedate = str(themonth) + r"/" + str(theday) + r"/" + str(theyear)
 starttime = str(thehour) + ":" + str(theminutes) + ":"+str(theseconds)
 return thedate +", "+ starttime

www.manaraa.com

72

def EndTime(starttime):
 #Calculate the processing time and
 #print the processing time to the screen.
 endtime = time.time()
 t = time.localtime(endtime)
 print "Finished at " + GetTime(t)
 totalseconds = endtime - starttime
 hours1 = totalseconds/3600
 hours = int(hours1)
 minutes2 = hours1 - hours
 minutes1 = minutes2*60
 minutes = int(minutes1)
 seconds = int((minutes1-minutes)*60)
 print "Time to Process; "+str(hours) +": "+str(minutes) +": "+str(seconds)
 print GetTime(t)
try:
 starttime = time.time()
 t = time.localtime(starttime)
 print "Start Time = " + GetTime(t)
 #Create Geoprocessing object, set workspace, set extensions, and purge schema locks.
 gp = arcgisscripting.create()
 gp.workspace = TheWorkingDirectory
 gp.RefreshCatalog(TheWorkingDirectory)
 gp.CheckOutExtension("3D")
 gp.OverWriteOutput = OverWriteOutput
 gp.XYResolution = XYResolution
 #Required Variables for this script.
 Edges = "Edges"
 BoundingPolygon = "BoundingPolygon"
 BoundingPolygonLine = "BoundingPolygonLine"
 FlowDirectionLines = "FlowDirections"
 Edges_Layer = "Edges_Layer"
 BoundingPolygonLine_Layer = "BoundingPolygonLine_Layer"
 #The geoprocessor will not overwrite a text file. If it exists, delete the existing copy.
 if os.path.exists(textfile):
 os.remove(textfile)

www.manaraa.com

73

 print "Purge lines that intersect the bounding polygon of the TIN."
 #Convert the bounding polygon to a line feature class to facilitate the
 #selections that remove edge lines on the periphery of the TIN. Select any
 #lines that intersect the bounding polygon and delete them.
 gp.FeatureToLine_management(BoundingPolygon, BoundingPolygonLine, "", "ATTRIBUTES")
 gp.MakeFeatureLayer_management(Edges, Edges_Layer, "", "", "Index Index VISIBLE NONE;EdgeType EdgeType VISIBLE NONE;Shape_Length Shape_Length
VISIBLE NONE")
 gp.MakeFeatureLayer_management(BoundingPolygonLine, BoundingPolygonLine_Layer, "", "", "")
 gp.SelectLayerByLocation_management(Edges_Layer, "INTERSECT", BoundingPolygonLine_Layer, "", "NEW_SELECTION")
 gp.DeleteFeatures_management(Edges_Layer)
 #Create a text file that will store the feature geometry of the
 #flow direction lines.
 print "Create text file."
 f = open(textfile,'a')
 thestring = "polyline\n"
 f.writelines(thestring)
 f.close()
 #Start a search cursor to get the feature geometry of the
 #edge lines that intersect the nodes.
 print "Start Search Cursor."
 TheObjectID = 1
 desc = gp.Describe(Edges_Layer)
 shapefieldname = desc.ShapeFieldName
 rows2 = gp.SearchCursor(Edges_Layer)
 row2 = rows2.Next()
 superlist = []
 print "Reading feature geometry."
 while row2:
 feat = row2.GetValue(shapefieldname)
 thefeature = row2.getvalue(desc.OIDFieldName)
 partnum = 0
 partcount = feat.PartCount
 #Templist store the line geometry for each node.
 templist = []
 while partnum < partcount:
 part = feat.GetPart(partnum)
 pnt = part.Next()

www.manaraa.com

74

 pntcount = 0
 #Enter while loop for each edge, get the first x, y, z returned for each feature.
 while pnt:
 z = round(pnt.z,2)
 x = round(pnt.x,2)
 y = round(pnt.y,2)
 #If the list is empty, write xyz to the templist.
 if templist == []:
 templist=[x, y, z]
 #If the list is not empty, then this is the second node in the
 #line. Evaluate the z values of the two nodes
 #and write them to a list with the higher elevation first.
 #Also, create a unique ID consisting of a string of the from
 #coordinate values of each lines start and end nodes.
 else:
 #For cases where the first node returned is the lower end of the line do this.
 if z < templist[2]:
 x1 = str(templist[0])
 y1 = str(templist[1])
 IDKey = x1 + y1
 tempsuperlist = [IDKey, templist[0], templist[1], templist[2], x, y, z]
 #Calculate the line length using the distance formula.
 therun = math.pow(((math.pow((tempsuperlist[1]-tempsuperlist[4]),2)) + (math.pow((tempsuperlist[2] - tempsuperlist[5]),2))),.5)
 #Calculate the rise by subtracting the z values of the two line end nodes.
 therise = tempsuperlist[3]- tempsuperlist[6]
 #Convert the rise to the percent slope.
 percentslope = abs(therise/therun *100)
 tempsuperlist.append(percentslope)
 #Add the results of this line to the 'super list of all line IDs, coordinates, and slopes.
 superlist.append(tempsuperlist)
 #Reset templist to an empty list.
 templist = []
 #For cases where the first node returned is the higher end of the line do this.
 else:
 x1 = str(x)
 y1 = str(y)
 IDKey = x1+y1

www.manaraa.com

75

 tempsuperlist = [IDKey, x, y, z, templist[0], templist[1], templist[2]]
 #Calculate the line length using the distance formula.'''
 therun = math.pow(((math.pow((tempsuperlist[1]-tempsuperlist[4]),2)) + (math.pow((tempsuperlist[2] - tempsuperlist[5]),2))),.5)
 #Calculate the rise by subtracting the z values of the two line end nodes.
 therise = tempsuperlist[3]- tempsuperlist[6]
 #Convert the rise to the percent slope.
 percentslope = abs(therise/therun *100)
 tempsuperlist.append(percentslope)
 #Add the results of this line to the 'super list of all line IDs, coordinates, and slopes.
 superlist.append(tempsuperlist)
 #Reset templist to an empty list.
 templist = []
 pnt = part.Next()
 pntcount += 1
 if not pnt:
 pnt = part.Next()
 partnum += 1
 #Add one to the TheObjectID.
 TheObjectID += 1
 row2 = rows2.Next()
 print "Total Lines Processed = "+ str(TheObjectID)
 #Sort (ascending)the list items based on the values stored in [0](the from id)
 superlist = sorted(superlist, key=operator.itemgetter(0))
 linesfromanode =[]
 TheObjectID = 0
 print "Finding steepest path out from each TIN node."
 #Superlist[] now contains all lines grouped by the 'from' coordinates. Get all records with the same ObjectID,
 #write them to a new list, and sort them by slope so that the greatest slope as the last record in the list.
 for item in superlist:
 #If the list is empty, grab the current item and add it to a new list.
 if linesfromanode == []:
 linesfromanode.append(item)
 #If the list is not empty, and the index of this item is equal to the index of the item currently
 #in the list, add it to the list.
 else:
 if linesfromanode[-1][0] == item[0]:
 linesfromanode.append(item)

www.manaraa.com

76

 #There are no more lines with the same index, so process the data and identify the
 #line with the steepest path from the node.
 else:
 #Sort the values by the slope, the last item in the list.
 linesfromanode = sorted(linesfromanode, key=operator.itemgetter(7))
 #Now the last item in the list hase the greatest slope and is therefore, the line out.
 lineout = linesfromanode.pop()
 #Write the coordinates and elevations (from-to) to a string formated for ArcGIS.
 thestring = str(TheObjectID) + " 0\n" + "0 "+ str(lineout[1])+" "+str(lineout[2]) +" " + str(lineout[3]) + "\n" + "1 " + str(lineout[4]) + " " + str(lineout[5]) + " " +
str(lineout[6])+"\n"
 f = open(textfile,'a')
 f.writelines(thestring)
 f.close()
 TheObjectID += 1
 #All finished with this node, now clear out the list of lines from this node.
 linesfromanode = []
 #The item returned is not part of the same node, use it to evaluate the lines out of this node.
 linesfromanode.append(item)
 #All lines have been processed and writen to a text file. Finish formatting the text file.
 f = open(textfile,'a')
 thestring = "END"
 f.writelines(thestring)
 f.close()
 #Read the text file of geometry and construct a new feature class
 #that represents the flow direction lines from each node.
 print "Building geometry."
 inSep = "."
 #Convert the text file to a shapefile.
 gp.CreateFeaturesFromTextFile_samples(textfile, inSep, FlowDirectionLines, "#")
 gp.RefreshCatalog(TheWorkingDirectory)
 #Delete variables.
 try:
 #Delete the geoprocessor.
 del gp
 except:
 pass
 EndTime(starttime)

www.manaraa.com

77

 x = raw_input("Finished, press enter to quit")
 sys.exit(0)
except arcgisscripting.ExecuteError:
 print "ArcGIS error in FlowDirectionsFromTIN.py."
 print gp.GetMessages(2)
 sys.exit()
except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Python error in FlowDirectionsFromTIN.py."
 sys.exit()

www.manaraa.com

78

Appendix C- 2_CreateCatchmentPolygons.py
print "Assign sink polygons to catchments "

#UserDefinedInputData
#The path to the geodatabase feature dataset
TheWorkingDirectory = r"C:\Temp\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro"
#A textfile path and name (must be a read\write space.)
textfile = r"C:\Temp\GBGTempTextFileForReassignLineDirections.txt"
#Set to 1 to delete the temp feature classes.
overwriteoutput = 1
deletetempdata = 0

import sys, string, os, arcgisscripting, math, operator, exceptions, shutil, time

def GetTime(t):
 #Convert time to a readable format and to time code execution.
 theyear = t[0]
 themonth = t[1]
 theday = t[2]
 thehour = t[3]
 theminutes = t[4]
 theseconds = t[5]
 thedate = str(themonth) + r"/" + str(theday) + r"/" + str(theyear)
 starttime = str(thehour) + ":" + str(theminutes) + ":"+str(theseconds)
 return thedate +", "+ starttime

def EndProgram(starttime, deletetempdata):
 #Quit the program, delete temporary data file if requested, and print code execution time.
 if deletetempdata == 1:
 print "Delete temp data"
 EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries"
 FlowLinesAcrossCatchmentsWithFlowDirections ="FlowLinesAcrossCatchmentsWithFlowDirections"
 SpatialJoinOutput = "SpatialJoinOutput"
 FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1"
 FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 gp.Delete_management(EdgesAccrossCatchmentBoundaries)
 gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirections)

www.manaraa.com

79

 gp.Delete_management(SpatialJoinOutput)
 gp.Delete_management(FeatureVerticiesToPoints1)
 gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirectionsedited)
 endtime = time.time()
 t = time.localtime(endtime)
 print "Finished at " + GetTime(t)
 totalseconds = endtime - starttime
 hours1 = totalseconds/3600
 hours = int(hours1)
 minutes2 = hours1 - hours
 minutes1 = minutes2*60
 minutes = int(minutes1)
 seconds = int((minutes1-minutes)*60)
 print "\n\nTime to Process; "+str(hours) +": "+str(minutes) +": "+str(seconds)
 x = raw_input("Finished! Press enter to quit")
 sys.exit(0)

def FillDonut(inputfeatureclass):
 #Catchment delineations can have other polygons bound within them. Delete any
 #verticies of a polygon the represent the interior portion of the feature
 #by identifing interior nodes and delete them using a feature geometry array.
 #The bounding polygon is no longer an annulus but a different record exists
 #that represents the area covered by the inner hole. Find those remaining
 #features and delete them. The resulting feature class represents an irregular
 #tesselation of polygons with no polygons bound within any other polygon.

 try:
 print "\nCall FillDonut()"
 desc = gp.Describe(inputfeatureclass)
 shapefield = desc.ShapeFieldName
 rows = gp.UpdateCursor(inputfeatureclass)
 row = rows.next()
 arrayObj = gp.CreateObject("Array")
 arrayOuter = gp.CreateObject("Array")
 ListOfIDs = []
 while row:
 feat = row.getValue(shapefield)

www.manaraa.com

80

 qInterior = False
 for partNum in range(feat.partCount) :
 part = feat.getPart(partNum)
 qInterior = False
 for ptNum in range(part.count):
 pt = part.next()
 if pt != None:
 arrayOuter.add(pt)
 else :
 qInterior = True
 break
 arrayObj.add(arrayOuter)
 arrayOuter.RemoveAll()
 if qInterior :
 row.setValue(shapefield,arrayObj)
 rows.updateRow(row)
 ListOfIDs.append(row.OBJECTID)
 arrayObj.RemoveAll()
 row = rows.next()
 del rows,row
 Catchments_Layer = "Catchments_Layer"
 gp.MakeFeatureLayer_management(inputfeatureclass, Catchments_Layer, "", "", "")
 if ListOfIDs != []:
 print "Filling features bound within other catchments."
 for item in ListOfIDs:
 gp.SelectLayerByAttribute_management(Catchments_Layer, "NEW_SELECTION", "\"OBJECTID\" = " + str(item))
 gp.SelectLayerByLocation_management(Catchments_Layer, "COMPLETELY_WITHIN", Catchments_Layer, "", "NEW_SELECTION")
 gp.DeleteFeatures_management(Catchments_Layer)
 else:
 print "No features bound within other features."
 print "Finished with FillDonut()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error in FillDonut()."

www.manaraa.com

81

 sys.exit()

def SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata):
 #Identifies those edge lines that cross catchment boundaries. Any polygon touching the
 #convex hull are excluded meaning all edge polygons can recieve flow from
 #non-edge polygons, but that cannot flow back into interior polygons. All
 #edge polygons must flow off the surface model.
 #This function also calculates the number of polygons that touch the convex hull
 #and the count of those that don't touch the convex hull. If those counts are the same, then all
 #aggregations are complete and the function calls EndProgram()
 try:
 print "\nCall SelectEdgeLinesThatCrossCatchmentBoundaries()."
 Output_Layer = "Output_Layer"
 Catchments_Output_Layer ="Catchments_Output_Layer"
 EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries"
 BoundingPolygon_Output_Layer= "Convex_Hull_Output_Layer"
 #Add an attribute to indentify if this catchment touches the edge of the convex hull
 gp.AddField_management(Catchments, "IS_POUR_PT", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 print "Make Feature Layer."
 #Make Feature Layers...
 gp.MakeFeatureLayer_management(Edges, Output_Layer, "", "", "")
 gp.MakeFeatureLayer_management(Catchments, Catchments_Output_Layer, "", "", "")
 gp.MakeFeatureLayer_management(BoundingPolygonLine, BoundingPolygon_Output_Layer, "", "", "")
 #Select only those sinks that do not touch the edge of the surface model, This tool assumes that all
 #polygons touching the convex hull can receive flow but do not flow into the surface model.
 CatchmentsCount = gp.GetCount_management(Catchments)
 print "CatchmentsCount = ", CatchmentsCount
 gp.SelectLayerByLocation_management(Catchments_Output_Layer, "BOUNDARY_TOUCHES", BoundingPolygon_Output_Layer, "",
"NEW_SELECTION")
 CatchmentsTouchingBoundingPolygon = gp.GetCount_management(Catchments_Output_Layer)
 print "CatchmentsTouchingBoundingPolygon = ", CatchmentsTouchingBoundingPolygon
 if CatchmentsCount == CatchmentsTouchingBoundingPolygon:
 print "\n\nAll Catchments intersect the convex hull."
 EndProgram(starttime, deletetempdata)
 gp.CalculateField_management(Catchments_Output_Layer, "IS_POUR_PT", "1", "VB")
 #Get a list of all the catchments touching the convex hull.
 ListOfPourPointCatchments = []

www.manaraa.com

82

 rows2 = gp.SearchCursor(Catchments_Output_Layer)
 row2 = rows2.Next()
 while row2:
 if row2.IS_POUR_PT == 1:
 ListOfPourPointCatchments.append(row2.Catchments)
 row2 = rows2.next()
 del rows2, row2
 #Select only those catchment polygons that are interior polygons.
 gp.SelectLayerByLocation_management(Catchments_Output_Layer, "", "", "", "SWITCH_SELECTION")
 print "Select all edges that cross the boundary of the selected polygons."
 gp.SelectLayerByLocation_management(Output_Layer, "CROSSED_BY_THE_OUTLINE_OF", Catchments_Output_Layer, "", "NEW_SELECTION")
 print "Create feature class EdgesAccrossCatchmentBoundaries."
 gp.CopyFeatures_management(Output_Layer, EdgesAccrossCatchmentBoundaries, "", "0", "0", "0")
 del Output_Layer, Catchments_Output_Layer, EdgesAccrossCatchmentBoundaries, BoundingPolygon_Output_Layer
 print "Finished SelectEdgeLinesThatCrossCatchmentBoundaries()"
 return ListOfPourPointCatchments
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with SelectEdgeLinesThatCrossCatchmentBoundaries()"
 sys.exit()

def AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile):
 #ESRI feature class geometry holds a start node and an end node. These nodes are independent of
 #poly z objects. Because lines can have a start node with a lower elevation than a end node,
 #reassign the line direction so that the highest z value is that start node.
 #Feature geometry is read using cursors identifying the start and end node z values and written to a list.
 #The line-node coordinates are flipped if necessary so that the line start has the highest z value.
 #The resulting geometry is written to a text file and that text file is used to create a new feature class so
 #that line direction is the same as the flow direction.
 try:
 print "\nCall AlterLineGeometryFlowsFrom2FlowsTo()."
 FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections"
 if os.path.exists(textfile):
 os.remove(textfile)

www.manaraa.com

83

 print "Create Text File."
 f = open(textfile,'a')
 thestring = "polyline\n"
 f.writelines(thestring)
 f.close()
 print "Read Feature Geometry. Create Correct Flow Directions."
 desc = gp.Describe(EdgesAccrossCatchmentBoundaries)
 shapefieldname = desc.ShapeFieldName
 rows = gp.SearchCursor(EdgesAccrossCatchmentBoundaries)
 row = rows.Next()
 while row:
 feat = row.GetValue(shapefieldname)
 FeatureID = str(row.getvalue(desc.OIDFieldName))
 partnum = 0
 partcount = feat.PartCount
 while partnum < partcount:
 ThePart = str(partnum)
 part = feat.GetPart(partnum)
 pnt = part.Next()
 pntcount = 0
 Thecurrentpart = []
 while pnt:
 Thecurrentpart.append(pnt.x)
 Thecurrentpart.append(pnt.y)
 Thecurrentpart.append(pnt.z)
 pnt = part.Next()
 pntcount += 1
 if not pnt:
 pnt = part.Next()
 if pnt:
 print "Interior Ring:"
 partnum += 1
 #If the from z is lower than the to z, flip them, write the results to a text file...
 if Thecurrentpart[2]<Thecurrentpart[5]:
 thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[3])+ " "+ str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+ "\n" +"1 "+
str(Thecurrentpart[0])+ " "+ str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+"\n"
 else:

www.manaraa.com

84

 thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[0])+ " "+ str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+ "\n" +"1 "+
str(Thecurrentpart[3])+ " "+ str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+"\n"
 f = open(textfile,'a')
 f.writelines(thestring)
 f.close()
 row = rows.Next()
 f = open(textfile,'a')
 thestring = "END"
 f.writelines(thestring)
 f.close()
 del row, rows
 #Create a new feature class that has the correct flow directions.
 print "Create Features from Text File."
 #Process: Create Features From Text File...
 gp.CreateFeaturesFromTextFile_samples(textfile, ".", FlowLinesAcrossCatchmentsWithFlowDirections, "")
 print "Finished AlterLineGeometryFlowsFrom2FlowsTo()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with AlterLineGeometryFlowsFrom2FlowsTo()."
 sys.exit()

def AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments):
 # This function appends to the attribute table of FlowLinesAcrossCatchmentsWithFlowDirections the
 #catchment ID for the catchment the line originates in and the catchment it ends in by exporting line nodes
 #to a new feature class, using a spatial join to append the catchment ID to the nodes. The resuting nodes
 #catchment values are read with a cursor and stored in a Python list. Finally, this list is iterated and the
 #catchment IDs are written to the attribute table of the lines. The FlowLinesAcrossCatchmentsWithFlowDirections
 #feature class will store the catchment IDs in attributes called From_ID, and To_ID.
 #Any line that originates in catchment x and flow back into it that same catchment is removed from the feature class
 #because this will cause closed loops which are not- reconsilable with the spanning tree funtion.
 try:
 print "\nCall AddCatchmentIDsToFlowLines()"
 SpatialJoinOutput = "SpatialJoinOutput"
 FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1"

www.manaraa.com

85

 print "Adding Fields"
 gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "From_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "To_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(Catchments, "Catchment1", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 #Get the catchment IDs for the lines that cross the catchment boundaries.
 print "Export Vertices to Points."
 gp.FeatureVerticesToPoints_management(FlowLinesAcrossCatchmentsWithFlowDirections, FeatureVerticiesToPoints1, "BOTH_ENDS")
 print "Join Vertices to Catchment IDs"
 fieldmappings = gp.CreateObject("FieldMappings")
 fieldmappings.AddTable(Catchments)
 fieldmap = fieldmappings.GetFieldMap(fieldmappings.FindFieldMapIndex("Catchments"))
 field = fieldmap.OutputField
 field.Name = "Catchments"
 fieldmap.OutputField = field
 fieldmappings.ReplaceFieldMap(fieldmappings.FindFieldMapIndex("Catchments"), fieldmap)
 gp.SpatialJoin_analysis(FeatureVerticiesToPoints1, Catchments, SpatialJoinOutput, "JOIN_ONE_TO_ONE", "KEEP_ALL",fieldmappings)
 #Enummerate the points and get the values of the catchments
 #Write the catchments to a list....
 #Because the FeatureVerticiesToPoints1 points are in order (from to) and
 #by original line FID, you can read the points and append to the lines.
 print "Searching Feature Attributes."
 rows2 = gp.SearchCursor(SpatialJoinOutput)
 row2 = rows2.Next()
 CatchmentNumbers = []
 while row2:
 catchment = row2.Catchments
 CatchmentNumbers.append(catchment)
 row2 = rows2.next()
 del rows2, row2
 #Each line flow from one catchment to another.
 #Add the from-catchment-id and the to-catchment-id
 #to the attribute table of the lines across catchments.
 #Remove any lines that flow back into themselved causing loop
 print "Writing Feature Attributes."
 counter = 0
 rows = gp.UpdateCursor(FlowLinesAcrossCatchmentsWithFlowDirections)
 row = rows.Next()

www.manaraa.com

86

 while row:
 try:
 From_ID = CatchmentNumbers[counter]
 To_ID = CatchmentNumbers[counter + 1]
 except:
 pass
 counter += 2
 #Edges can cross catchment boundaries but from-to the same catchment
 #causes a closed loop that chokes the spanning tree.
 #If this happens, delete that row to avoid sinks in sinks.
 if From_ID == To_ID or From_ID in ListOfPourPointCatchments:
 rows.DeleteRow(row)
 else:
 row.From_ID = From_ID
 row.To_ID = To_ID
 rows.UpdateRow(row)
 row = rows.Next()
 del row, rows
 print "Finished with AddCatchmentIDsToFlowLines()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error in AddCatchmentIDsToFlowLines()."
 sys.exit()
def FeatureZGeometryFromAPolylineZToList(InputFeatureClass):
 #Gets the feature geometry from a polyline z and
 #write the xyz values of the from nodes and to nodes
 #to a Python list.
 try:
 print "\nCall FeatureZGeometryFromAPolylineZToList()"
 desc = gp.Describe(InputFeatureClass)
 shapefieldname = desc.ShapeFieldName
 print "Start search cursor."
 rows = gp.SearchCursor(InputFeatureClass)
 row = rows.Next()

www.manaraa.com

87

 Alltheparts = []
 while row:
 feat = row.GetValue(shapefieldname)
 partnum = 0
 partcount = feat.PartCount
 while partnum < partcount:
 part = feat.GetPart(partnum)
 pnt = part.Next()
 pntcount = 0
 Thecurrentpart = []
 while pnt:
 Thecurrentpart.append(pnt.z)
 pnt = part.Next()
 pntcount += 1
 if not pnt:
 pnt = part.Next()
 partnum += 1
 Alltheparts.append(Thecurrentpart)
 row = rows.Next()
 return Alltheparts
 del row, rows, Thecurrentpart
 print "Finished FeatureZGeometryFromAPolylineZToList()"
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error writing feature z values to a list."
 sys.exit()

def WriteFeatureGeometryToTheAttributeTableLines(InputFeatureClass, ListOfZValues):
 #Read the feature geometry from the Python list generated by
 #FeatureZGeometryFromAPolylineZToList and writes that feature geometry
 #to the line file's attribute table.
 try:
 print "\nCall WriteFeatureGeometryToTheAttributeTableLines()."
 try:

www.manaraa.com

88

 print "Add fields"
 gp.AddField_management(InputFeatureClass, "FROM_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(InputFeatureClass, "TO_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 #gp.AddField_management(InputFeatureClass, "FLOW_LINE", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(InputFeatureClass, "Per_Slope", "Float", "", "", "", "", "", "NON_REQUIRED", "")
 except:
 print "Fields already exist, passing."
 pass
 counter = 0
 print "Start UpdateCursor."
 rows = gp.UpdateCursor(InputFeatureClass)
 row = rows.Next()
 while row:
 row.FROM_Z = ListOfZValues[counter][0]
 row.TO_Z = ListOfZValues[counter][1]
 therise = ListOfZValues[counter][0]- ListOfZValues[counter][1]
 percentslope = abs(therise/row.Shape_Length *100)
 row.Per_Slope = percentslope
 counter += 1
 rows.UpdateRow(row)
 row = rows.Next()
 del row, rows, ListOfZValues, counter
 print "Finished with WriteFeatureGeometryToTheAttributeTableLines()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with WriteFeatureGeometryToTheAttributeTableLines()."
 sys.exit()

def IdentifyFlowLineOutOfSinkPolygons(InputFeatureClass1):
 #The feature class called FlowLinesAcrossCatchmentsWithFlowDirections
 #represents all flow lines extending out of each polygon.
 #This functions analyses each line for each polygon and identifies that line which that
 #has the lowest 'flows from' z value. Because this line represent the most likely
 #path water would take if the polygon was filled, this line identifies the connective

www.manaraa.com

89

 #route between two sink polygons. If there is more than one line that share the same
 #lowest z value, then the line with the steepest slope is selected. If there are
 #more that one line with the same lowest z out value, and the same slope, the last
 #item returned by the Python sort method is selected.
 #A new feature class called FlowLinesAcrossCatchmentsWithFlowDirectionsedited is created.
 #FlowLinesAcrossCatchmentsWithFlowDirectionsedited are those lines that define the path
 #water would take if filled and flowed into its neighbor.

 try:
 print "\nCall IdentifyFlowLineOutOfSinkPolygons()"
 InputFeatureClass1 = "FlowLinesAcrossCatchmentsWithFlowDirections"
 InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 print "copy features"
 gp.Copy_management(InputFeatureClass1, InputFeatureClass)
 print "Write all objectid, from catchment ids, fromz, and slopes to a list"
 rows = gp.SearchCursor(InputFeatureClass)
 row = rows.Next()
 SuperList = []
 while row:
 templist = []
 templist.append(row.OBJECTID)
 templist.append(row.From_ID)
 templist.append(row.FROM_Z)
 templist.append(-1 * row.Per_Slope)
 SuperList.append(templist)
 row = rows.next()
 del rows, row
 #Sort ascending order fromid, fromz, and descending perslope.
 print "Sort list by ascending catchment id, ascending from z, and descending slope values."
 SuperList = sorted(SuperList, key=operator.itemgetter(1,2,3))
 CatchmentList = []
 ObjectIDList = []
 #The first item in superlist is the line in that catchment with the lowest fromz and
 #the steepest slope if more than one, save this line and purge the rest.
 for item in SuperList:
 if item[1]not in CatchmentList:
 #The first from catchment returned is that line with the lowest z value out, and the steepest slope.

www.manaraa.com

90

 #Save that from catchment id to a list and save that object id, this identifies the flow out lines.
 CatchmentList.append(item[1])
 ObjectIDList.append(item[0])
 #Now delete any lines not the line out.
 rows = gp.UpdateCursor(InputFeatureClass)
 row = rows.Next()
 while row:
 #If the objectid is in the object id list, this is a flow out line, keep it.
 #Otherwise, remove it from the feature class.
 if row.OBJECTID in ObjectIDList:
 pass
 else:
 rows.DeleteRow(row)
 row = rows.next()
 del rows, row#, SuperList, templist, CatchmentList, ObjectIDList
 print "Finished IdentifyFlowLineOutOfSinkPolygons()"
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with IdentifyFlowLineOutOfSinkPolygons()."
 sys.exit()

def CreateListOfFromAndToCatchmentValues(InputFeatureClass):
 #The lines in FlowLinesAcrossCatchmentsWithFlowDirectionsedited store all the catchment id that they
 #flow from, flow into, and the z value of the flows to end. This function reads that feature
 #class and writes these values to a Python list including a new 'aggregated catchment ID value. The
 #resulting list is formatted for use the SpanTheTree().
 try:
 InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 print "\nCall CreateListOfFromAndToCatchmentValues()"
 ToFromList = []
 rows = gp.SearchCursor(InputFeatureClass)
 row = rows.Next()
 counter = 0
 while row:

www.manaraa.com

91

 templist = []
 templist.append(row.From_ID)
 templist.append(row.To_ID)
 templist.append(row.To_Z)
 templist.append(0)
 ToFromList.append(templist)
 row = rows.next()
 counter +=1
 print "Finished with CreateListOfFromAndToCatchmentValues()"
 del rows, row
 return ToFromList
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error in CreateListOfFromAndToCatchmentValues()."
 sys.exit()
def SpanTheTree(ToFromList, From_ID, counter):
 #The ToFromList is sort by increasing flows to z values. This
 #funtions iterates the list and identifies any connected catchments by walking up
 #the connected graph and checking flows from -flows to values.
 #The variable counter is used to store a nominal value used to
 #identify which sinks are connected.
 try:
 for item in ToFromList:
 currentCatchment = From_ID
 for item2 in ToFromList:
 if item2[3] == 0 and item2[1] == From_ID:
 item2[3] = counter
 From_ID = item2[0]
 ToFromList = SpanTheTree(ToFromList, From_ID, counter)
 return ToFromList
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:

www.manaraa.com

92

 print ErrorDesc.message
 print "Error in SpanTheTree()."
 sys.exit()

def AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList):
 #Dissolves catchments together that share connected flow by iterating the ToFromList.
 #If the catchment value exists in the ToFromList, it is assigned that new catchment ID value
 #from an item in the ToFromList which is writen to a new attribute called Catchments1.
 #If the catchment is not found in the ToFromList that polygon is asigned an arbitrary unique
 #nominal value.
 try:
 CatchmentsCount = gp.GetCount_management(Catchments)
 print "\nStart AggregateCatchmentSinksToNewCatchments()"
 rows = gp.UpdateCursor(Catchments)
 row = rows.Next()
 while row:
 #Identify any catchment polygon without flow in or out (edge polygons)
 noflowpathcatchment = 0
 for item in ToFromList:
 if item[0] == row.Catchments or item[1] == row.Catchments:
 row.Catchment1 = item[3]
 #This row has flow in or out, so assign noflowpathcatchment a value of 1 and break the iteration.
 noflowpathcatchment = 1
 break
 #The ToFromList was iterated and no connective flow found, give the catchment
 #a unique catchment1 id. The CatchmentCount is used to assign a values that will not conflict
 #with the catchment1 IDs defined earlier in the code.
 if noflowpathcatchment == 0:
 row.Catchment1 = int(CatchmentsCount)
 CatchmentsCount -=1
 rows.UpdateRow(row)
 row = rows.Next()
 print "Create Catchments featureclass."
 CatchmentsFirstFill = "CatchmentsFirstFill"
 gp.Dissolve_management(Catchments, CatchmentsFirstFill, "Catchment1", "", "MULTI_PART", "DISSOLVE_LINES")
 gp.AddField_management(CatchmentsFirstFill, "Catchments", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 gp.CalculateField_management(CatchmentsFirstFill, "Catchments", "[OBJECTID]", "VB", "")

www.manaraa.com

93

 gp.CalculateField_management(CatchmentsFirstFill, "Catchment1", "[OBJECTID]", "VB", "")
 print "RenameFiles and Proceed."
 dummy = 1
 counter = 1
 while dummy == 1:
 newcatchment = "Catchments" + str(counter)
 print "Check for " + newcatchment
 if gp.Exists(newcatchment):
 counter +=1
 else:
 print "rename Catchments to ", newcatchment
 gp.Rename_management(Catchments, newcatchment, "FeatureClass")
 print "Rename CatchmentsFirstFill"
 gp.Rename_management(CatchmentsFirstFill, Catchments, "FeatureClass")
 print "reset dummy"
 dummy = 0
 print "Finished with AggregateCatchmentSinksToNewCatchments()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with AggregateCatchmentSinksToNewCatchments()."
 sys.exit()
##############
try:
 try:
 print "Create geoprocessor."
 gp = arcgisscripting.create()
 print "Set product type to ArcInfo."
 gp.SetProduct("ArcInfo")
 gp.overwriteoutput = overwriteoutput
 print "Check out 3D and SA extentions."
 gp.CheckOutExtension("3D")
 gp.CheckOutExtension("sa")
 print "Set workspace directory."
 gp.workspace = TheWorkingDirectory

www.manaraa.com

94

 gp.RefreshCatalog(TheWorkingDirectory)
 starttime = time.time()
 t = time.localtime(starttime)
 print "Start Time = " + GetTime(t)
 #Script defined (required) variables. Do not alter these variable names...
 print "Define variables."
 Edges = "Edges"
 Catchments = "Catchments"
 FlowLinesAcrossCatchments = "FlowLinesAcrossCatchments"
 Nodes = "Nodes"
 BoundingPolygon = "BoundingPolygon"
 BoundingPolygonLine = "BoundingPolygonLine"
 EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries"
 FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections"
 FlowLinesAcrossCatchmentsWithFlowDirectionsLayer = "FlowLinesAcrossCatchmentsWithFlowDirectionsLayer"
 CatchmentsFirstFill = "CatchmentsFirstFill"
 NodesFeatureLayer = "NodesFeatureLayer"
 FlowLinesAcrossCatchmentsFeatureLayer = "FlowLinesAcrossCatchmentsFeatureLayer"
 startnodes = "startnodes"
 startnodes_Output_Layer = "startnodes_Output_Layer"
 FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 EndNodesWithCatchmentIDs = "EndNodesWithCatchmentIDs"
 FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1"
 EndNodes = "EndNodes"
 SpatialJoinOutput = "SpatialJoinOutput"
 EndNodesTemp = "EndNodesTemp"
 EndNodes_Dissolve = "EndNodes_Dissolve"
 CatchmentsFirstFillTemp = "CatchmentsFirstFillTemp"
 ListOFZValues = []
 except:
 print "Error in creating gp or declaring variables."
 sys.exit()
 #Keep doing this until the EndProgram() is called.
 while True:
 FillDonut(Catchments)
 ListOfPourPointCatchments = SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata)
 AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile)

www.manaraa.com

95

 AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments)
 ListOFZValues = FeatureZGeometryFromAPolylineZToList(FlowLinesAcrossCatchmentsWithFlowDirections)
 WriteFeatureGeometryToTheAttributeTableLines(FlowLinesAcrossCatchmentsWithFlowDirections, ListOFZValues)
 IdentifyFlowLineOutOfSinkPolygons(FlowLinesAcrossCatchmentsWithFlowDirections)
 ToFromList = CreateListOfFromAndToCatchmentValues(FlowLinesAcrossCatchmentsWithFlowDirectionsedited)
 ToFromList = sorted(ToFromList,key=operator.itemgetter(2))
 counter = 1
 for item in ToFromList:
 currentCatchment = item[1]
 for item2 in ToFromList:
 if item2[1] == currentCatchment and item2[3] == 0:
 item2[3] = counter
 From_ID = item2[0]
 itemcounter = 0
 FromToCatchmentIDs = SpanTheTree(ToFromList, From_ID, counter)
 counter +=1
 AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList)
except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
except Exception, ErrorDesc:
 print ErrorDesc.message
 print "General Python Error."

www.manaraa.com

96

Appendix D- 3_AggregateSinkCatchments.py

print "Assign sink polygons to catchments "

######User Defined Variables######################################
#The path to the geodatabase feature dataset
TheWorkingDirectory = r"C:\Temp\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro"
#A textfile path and name (must be a read\write space.)
textfile = r"C:\Temp\GBGTempTextFileForReassignLineDirections.txt"
#Set to 1 to delete the temp feature classes.
overwriteoutput = 1
deletetempdata = 0

import sys, string, os, arcgisscripting, math, operator, exceptions, shutil, time

def GetTime(t):
 #Convert time to a readable format and to time code execution.
 theyear = t[0]
 themonth = t[1]
 theday = t[2]
 thehour = t[3]
 theminutes = t[4]
 theseconds = t[5]
 thedate = str(themonth) + r"/" + str(theday) + r"/" + str(theyear)
 starttime = str(thehour) + ":" + str(theminutes) + ":"+str(theseconds)
 return thedate +", "+ starttime

def EndProgram(starttime, deletetempdata):
 #Quit the program,delete temporary data file if requested, and
 #print code execution time.
 if deletetempdata == 1:
 print "Delete temp data"
 EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries"
 FlowLinesAcrossCatchmentsWithFlowDirections ="FlowLinesAcrossCatchmentsWithFlowDirections"
 SpatialJoinOutput = "SpatialJoinOutput"
 FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1"
 FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 gp.Delete_management(EdgesAccrossCatchmentBoundaries)
 gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirections)

www.manaraa.com

97

 gp.Delete_management(SpatialJoinOutput)
 gp.Delete_management(FeatureVerticiesToPoints1)
 gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirectionsedited)
 endtime = time.time()
 t = time.localtime(endtime)
 print "Finished at " + GetTime(t)
 totalseconds = endtime - starttime
 hours1 = totalseconds/3600
 hours = int(hours1)
 minutes2 = hours1 - hours
 minutes1 = minutes2*60
 minutes = int(minutes1)
 seconds = int((minutes1-minutes)*60)
 print "\n\nTime to Process; "+str(hours) +": "+str(minutes) +": "+str(seconds)
 x = raw_input("Finished! Press enter to quit")
 sys.exit(0)

def FillDonut(inputfeatureclass):
 #Catchment delineations can have other polygons bound within them. Delete any
 #verticies of a polygon the represent the interior portion of the feature
 #by identifing interior nodes and delete them using a feature geometry array.
 #The bounding polygon is no longer an annulus but a different record exists
 #that represents the area covered by the inner hole. Find those remaining
 #features and delete them. The resulting feature class represents an irregular
 #tesselation of polygons with no polygons bound within any other polygon.
 try:
 print "\nCall FillDonut()"
 desc = gp.Describe(inputfeatureclass)
 shapefield = desc.ShapeFieldName
 rows = gp.UpdateCursor(inputfeatureclass)
 row = rows.next()
 arrayObj = gp.CreateObject("Array")
 arrayOuter = gp.CreateObject("Array")
 ListOfIDs = []
 while row:
 feat = row.getValue(shapefield)
 qInterior = False
 for partNum in range(feat.partCount) :
 part = feat.getPart(partNum)
 qInterior = False
 for ptNum in range(part.count):

www.manaraa.com

98

 pt = part.next()
 if pt != None:
 arrayOuter.add(pt)
 else :
 qInterior = True
 break
 arrayObj.add(arrayOuter)
 arrayOuter.RemoveAll()
 if qInterior :
 row.setValue(shapefield,arrayObj)
 rows.updateRow(row)
 ListOfIDs.append(row.OBJECTID)
 arrayObj.RemoveAll()
 row = rows.next()
 del rows,row
 Catchments_Layer = "Catchments_Layer"
 gp.MakeFeatureLayer_management(inputfeatureclass, Catchments_Layer, "", "", "")
 if ListOfIDs != []:
 print "Filling features bound within other catchments."
 for item in ListOfIDs:
 gp.SelectLayerByAttribute_management(Catchments_Layer, "NEW_SELECTION", "\"OBJECTID\" = " + str(item))
 gp.SelectLayerByLocation_management(Catchments_Layer, "COMPLETELY_WITHIN", Catchments_Layer, "", "NEW_SELECTION")
 gp.DeleteFeatures_management(Catchments_Layer)
 else:
 print "No features bound within other features."
 print "Finished with FillDonut()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error in FillDonut()."
 sys.exit()

def SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata):
 #Identifies those edge lines that cross catchment boundaries. Any polygon touching the
 #convex hull are excluded meaning all edge polygons can recieve flow from
 #non-edge polygons, but that cannot flow back into interior polygons. All
 #edge polygons must flow off the surface model.
 #This function also calculates the number of polygons that touch the convex hull
 #and the count of those that don't touch the convex hull. If those counts are the same, then all

www.manaraa.com

99

 #aggregations are complete and the function calls EndProgram()
 try:
 print "\nCall SelectEdgeLinesThatCrossCatchmentBoundaries()."
 Output_Layer = "Output_Layer"
 Catchments_Output_Layer ="Catchments_Output_Layer"
 EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries"
 BoundingPolygon_Output_Layer= "Convex_Hull_Output_Layer"
 #Add an attribute to indentify if this catchment touches the edge of the convex hull
 gp.AddField_management(Catchments, "IS_POUR_PT", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 print "Make Feature Layer."
 #Make Feature Layers...
 gp.MakeFeatureLayer_management(Edges, Output_Layer, "", "", "")
 gp.MakeFeatureLayer_management(Catchments, Catchments_Output_Layer, "", "", "")
 gp.MakeFeatureLayer_management(BoundingPolygonLine, BoundingPolygon_Output_Layer, "", "", "")
 #Select only those sinks that do not touch the edge of the surface model, This tool assumes that all
 #polygons touching the convex hull can receive flow but do not flow into the surface model.
 CatchmentsCount = gp.GetCount_management(Catchments)
 print "CatchmentsCount = ", CatchmentsCount
 gp.SelectLayerByLoc

ation_management(Catchments_Output_Layer, "BOUNDARY_TOUCHES", BoundingPolygon_Output_Layer, "", "NEW_SELECTION")
 CatchmentsTouchingBoundingPolygon = gp.GetCount_management(Catchments_Output_Layer)
 print "CatchmentsTouchingBoundingPolygon = ", CatchmentsTouchingBoundingPolygon
 if CatchmentsCount == CatchmentsTouchingBoundingPolygon:
 print "\n\nAll Catchments intersect the convex hull."
 EndProgram(starttime, deletetempdata)
 gp.CalculateField_management(Catchments_Output_Layer, "IS_POUR_PT", "1", "VB")
 #Get a list of all the catchments touching the convex hull.
 ListOfPourPointCatchments = []
 rows2 = gp.SearchCursor(Catchments_Output_Layer)
 row2 = rows2.Next()
 while row2:
 if row2.IS_POUR_PT == 1:
 ListOfPourPointCatchments.append(row2.Catchments)
 row2 = rows2.next()
 del rows2, row2
 #Select only those catchment polygons that are interior polygons.
 gp.SelectLayerByLocation_management(Catchments_Output_Layer, "", "", "", "SWITCH_SELECTION")
 print "Select all edges that cross the boundary of the selected polygons."
 gp.SelectLayerByLocation_management(Output_Layer, "CROSSED_BY_THE_OUTLINE_OF", Catchments_Output_Layer, "", "NEW_SELECTION")
 print "Create feature class EdgesAccrossCatchmentBoundaries."

www.manaraa.com

100

 gp.CopyFeatures_management(Output_Layer, EdgesAccrossCatchmentBoundaries, "", "0", "0", "0")
 del Output_Layer, Catchments_Output_Layer, EdgesAccrossCatchmentBoundaries, BoundingPolygon_Output_Layer
 print "Finished SelectEdgeLinesThatCrossCatchmentBoundaries()"
 return ListOfPourPointCatchments
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with SelectEdgeLinesThatCrossCatchmentBoundaries()"
 sys.exit()

def AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile):
 #ESRI feature class geometry holds a start node and an end node. These nodes are independent of
 #poly z objects. Because lines can have a start node with a lower elevation than a end node,
 #reassign the line direction so that the highest z value is that start node.
 #Feature geometry is read using cursors identifying the start and end node z values and written to a list.
 #The line-node coordinates are flipped if necessary so that the line start has the highest z value.
 #The resulting geometry is written to a text file and that text file is used to create a new feature class so
 #that line direction is the same as the flow direction.
 try:
 print "\nCall AlterLineGeometryFlowsFrom2FlowsTo()."
 FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections"
 if os.path.exists(textfile):
 os.remove(textfile)
 print "Create Text File."
 f = open(textfile,'a')
 thestring = "polyline\n"
 f.writelines(thestring)
 f.close()
 print "Read Feature Geometry. Create Correct Flow Directions."
 desc = gp.Describe(EdgesAccrossCatchmentBoundaries)
 shapefieldname = desc.ShapeFieldName
 rows = gp.SearchCursor(EdgesAccrossCatchmentBoundaries)
 row = rows.Next()
 while row:
 feat = row.GetValue(shapefieldname)
 FeatureID = str(row.getvalue(desc.OIDFieldName))
 partnum = 0
 partcount = feat.PartCount
 while partnum < partcount:

www.manaraa.com

101

 ThePart = str(partnum)
 part = feat.GetPart(partnum)
 pnt = part.Next()
 pntcount = 0
 Thecurrentpart = []
 while pnt:
 Thecurrentpart.append(pnt.x)
 Thecurrentpart.append(pnt.y)
 Thecurrentpart.append(pnt.z)
 pnt = part.Next()
 pntcount += 1
 if not pnt:
 pnt = part.Next()
 if pnt:
 print "Interior Ring:"
 partnum += 1
 #If the from z is lower than the to z, flip them, write the results to a text file...
 if Thecurrentpart[2]<Thecurrentpart[5]:
 thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[3])+ " "+ str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+ "\n" +"1 "+ str(Thecurrentpart[0])+ " "+
str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+"\n"
 else:
 thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[0])+ " "+ str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+ "\n" +"1 "+ str(Thecurrentpart[3])+ " "+
str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+"\n"
 f = open(textfile,'a')
 f.writelines(thestring)
 f.close()
 row = rows.Next()
 f = open(textfile,'a')
 thestring = "END"
 f.writelines(thestring)
 f.close()
 del row, rows
 #Create a new feature class that has the correct flow directions.
 print "Create Features from Text File."
 #Process: Create Features From Text File...
 gp.CreateFeaturesFromTextFile_samples(textfile, ".", FlowLinesAcrossCatchmentsWithFlowDirections, "")
 print "Finished AlterLineGeometryFlowsFrom2FlowsTo()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:

www.manaraa.com

102

 print ErrorDesc.message
 print "Error with AlterLineGeometryFlowsFrom2FlowsTo()."
 sys.exit()

def AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments):
 # This function appends to the attribute table of FlowLinesAcrossCatchmentsWithFlowDirections the
 #catchment ID for the catchment the line originates in and the catchment it ends in by exporting line nodes
 #to a new feature class, using a spatial join to append the catchment ID to the nodes. The resuting nodes
 #catchment values are read with a cursor and stored in a Python list. Finally, this list is iterated and the
 #catchment IDs are written to the attribute table of the lines. The FlowLinesAcrossCatchmentsWithFlowDirections
 #feature class will store the catchment IDs in attributes called From_ID, and To_ID.
 #Any line that originates in catchment x and flow back into it that same catchment is removed from the feature class
 #because this will cause closed loops which are not- reconsilable with the spanning tree funtion.
 try:
 print "\nCall AddCatchmentIDsToFlowLines()"
 SpatialJoinOutput = "SpatialJoinOutput"
 FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1"
 print "Adding Fields"
 gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "From_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "To_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(Catchments, "Catchment1", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 #Get the catchment IDs for the lines that cross the catchment boundaries.
 print "Export Vertices to Points."
 gp.FeatureVerticesToPoints_management(FlowLinesAcrossCatchmentsWithFlowDirections, FeatureVerticiesToPoints1, "BOTH_ENDS")
 print "Join Vertices to Catchment IDs"
 fieldmappings = gp.CreateObject("FieldMappings")
 fieldmappings.AddTable(Catchments)
 fieldmap = fieldmappings.GetFieldMap(fieldmappings.FindFieldMapIndex("Catchments"))
 field = fieldmap.OutputField
 field.Name = "Catchments"
 fieldmap.OutputField = field
 fieldmappings.ReplaceFieldMap(fieldmappings.FindFieldMapIndex("Catchments"), fieldmap)
 gp.SpatialJoin_analysis(FeatureVerticiesToPoints1, Catchments, SpatialJoinOutput, "JOIN_ONE_TO_ONE", "KEEP_ALL",fieldmappings)
 #Enummerate the points and get the values of the catchments
 #Write the catchments to a list....
 #Because the FeatureVerticiesToPoints1 points are in order (from to) and
 #by original line FID, you can read the points and append to the lines.
 print "Searching Feature Attributes."
 rows2 = gp.SearchCursor(SpatialJoinOutput)
 row2 = rows2.Next()
 CatchmentNumbers = []

www.manaraa.com

103

 while row2:
 catchment = row2.Catchments
 CatchmentNumbers.append(catchment)
 row2 = rows2.next()
 del rows2, row2
 #Each line flow from one catchment to another.
 #Add the from-catchment-id and the to-catchment-id
 #to the attribute table of the lines across catchments.
 #Remove any lines that flow back into themselved causing loop
 print "Writing Feature Attributes."
 counter = 0
 rows = gp.UpdateCursor(FlowLinesAcrossCatchmentsWithFlowDirections)
 row = rows.Next()
 while row:
 try:
 From_ID = CatchmentNumbers[counter]
 To_ID = CatchmentNumbers[counter + 1]
 except:
 pass
 counter += 2
 #Edges can cross catchment boundaries but from-to the same catchment
 #causes a closed loop that chokes the spanning tree.
 #If this happens, delete that row to avoid sinks in sinks.
 if From_ID == To_ID or From_ID in ListOfPourPointCatchments:
 rows.DeleteRow(row)
 else:
 row.From_ID = From_ID
 row.To_ID = To_ID
 rows.UpdateRow(row)
 row = rows.Next()
 del row, rows
 print "Finished with AddCatchmentIDsToFlowLines()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error in AddCatchmentIDsToFlowLines()."
 sys.exit()

def FeatureZGeometryFromAPolylineZToList(InputFeatureClass):

www.manaraa.com

104

 #Gets the feature geometry from a polyline z and
 #write the xyz values of the from nodes and to nodes
 #to a Python list.
 try:
 print "\nCall FeatureZGeometryFromAPolylineZToList()"
 desc = gp.Describe(InputFeatureClass)
 shapefieldname = desc.ShapeFieldName
 print "Start search cursor."
 rows = gp.SearchCursor(InputFeatureClass)
 row = rows.Next()
 Alltheparts = []
 while row:
 feat = row.GetValue(shapefieldname)
 partnum = 0
 partcount = feat.PartCount
 while partnum < partcount:
 part = feat.GetPart(partnum)
 pnt = part.Next()
 pntcount = 0
 Thecurrentpart = []
 while pnt:
 Thecurrentpart.append(pnt.z)
 pnt = part.Next()
 pntcount += 1
 if not pnt:
 pnt = part.Next()
 partnum += 1
 Alltheparts.append(Thecurrentpart)
 row = rows.Next()
 return Alltheparts
 del row, rows, Thecurrentpart
 print "Finished FeatureZGeometryFromAPolylineZToList()"
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error writing feature z values to a list."
 sys.exit()

def WriteFeatureGeometryToTheAttributeTableLines(InputFeatureClass, ListOfZValues):

www.manaraa.com

105

 #Read the feature geometry from the Python list generated by
 #FeatureZGeometryFromAPolylineZToList and writes that feature geometry
 #to the line file's attribute table.
 try:
 print "\nCall WriteFeatureGeometryToTheAttributeTableLines()."
 try:
 print "Add fields"
 gp.AddField_management(InputFeatureClass, "FROM_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(InputFeatureClass, "TO_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 #gp.AddField_management(InputFeatureClass, "FLOW_LINE", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "")
 gp.AddField_management(InputFeatureClass, "Per_Slope", "Float", "", "", "", "", "", "NON_REQUIRED", "")
 except:
 print "Fields already exist, passing."
 pass
 counter = 0
 print "Start UpdateCursor."
 rows = gp.UpdateCursor(InputFeatureClass)
 row = rows.Next()
 while row:
 row.FROM_Z = ListOfZValues[counter][0]
 row.TO_Z = ListOfZValues[counter][1]
 therise = ListOfZValues[counter][0]- ListOfZValues[counter][1]
 percentslope = abs(therise/row.Shape_Length *100)
 row.Per_Slope = percentslope
 counter += 1
 rows.UpdateRow(row)
 row = rows.Next()
 del row, rows, ListOfZValues, counter
 print "Finished with WriteFeatureGeometryToTheAttributeTableLines()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with WriteFeatureGeometryToTheAttributeTableLines()."
 sys.exit()

def IdentifyFlowLineOutOfSinkPolygons(InputFeatureClass1):

 #The feature class called FlowLinesAcrossCatchmentsWithFlowDirections
 #represents all flow lines extending out of each polygon.

www.manaraa.com

106

 #This functions analyses each line for each polygon and identifies that line which that
 #has the lowest 'flows from' z value. Because this line represent the most likely
 #path water would take if the polygon was filled, this line identifies the connective
 #route between two sink polygons. If there is more than one line that share the same
 #lowest z value, then the line with the steepest slope is selected. If there are
 #more that one line with the same lowest z out value, and the same slope, the last
 #item returned by the Python sort method is selected.
 #A new feature class called FlowLinesAcrossCatchmentsWithFlowDirectionsedited is created.
 #FlowLinesAcrossCatchmentsWithFlowDirectionsedited are those lines that define the path
 #water would take if filled and flowed into its neighbor.
 try:
 print "\nCall IdentifyFlowLineOutOfSinkPolygons()"
 InputFeatureClass1 = "FlowLinesAcrossCatchmentsWithFlowDirections"
 InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 print "copy features"
 gp.Copy_management(InputFeatureClass1, InputFeatureClass)
 print "Write all objectid, from catchment ids, fromz, and slopes to a list"
 rows = gp.SearchCursor(InputFeatureClass)
 row = rows.Next()
 SuperList = []
 while row:
 templist = []
 templist.append(row.OBJECTID)
 templist.append(row.From_ID)
 templist.append(row.FROM_Z)
 templist.append(-1 * row.Per_Slope)
 SuperList.append(templist)
 row = rows.next()
 del rows, row
 #Sort ascending order fromid, fromz, and descending perslope.
 print "Sort list by ascending catchment id, ascending from z, and descending slope values."
 SuperList = sorted(SuperList, key=operator.itemgetter(1,2,3))
 CatchmentList = []
 ObjectIDList = []
 #The first item in superlist is the line in that catchment with the lowest fromz and
 #the steepest slope if more than one, save this line and purge the rest.
 for item in SuperList:
 if item[1]not in CatchmentList:
 #The first from catchment returned is that line with the lowest z value out, and the steepest slope.
 #Save that from catchment id to a list and save that object id, this identifies the flow out lines.
 CatchmentList.append(item[1])

www.manaraa.com

107

 ObjectIDList.append(item[0])
 #Now delete any lines not the line out.
 rows = gp.UpdateCursor(InputFeatureClass)
 row = rows.Next()
 while row:
 #If the objectid is in the object id list, this is a flow out line, keep it.
 #Otherwise, remove it from the feature class.
 if row.OBJECTID in ObjectIDList:
 pass
 else:
 rows.DeleteRow(row)
 row = rows.next()
 del rows, row#, SuperList, templist, CatchmentList, ObjectIDList
 print "Finished IdentifyFlowLineOutOfSinkPolygons()"
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with IdentifyFlowLineOutOfSinkPolygons()."
 sys.exit()

def CreateListOfFromAndToCatchmentValues(InputFeatureClass):
 #The lines in FlowLinesAcrossCatchmentsWithFlowDirectionsedited store all the catchment id that they
 #flow from, flow into, and the z value of the flows to end. This function reads that feature
 #class and writes these values to a Python list including a new 'aggregated catchment ID value. The
 #resulting list is formatted for use the SpanTheTree().
 try:
 InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 print "\nCall CreateListOfFromAndToCatchmentValues()"
 ToFromList = []
 rows = gp.SearchCursor(InputFeatureClass)
 row = rows.Next()
 counter = 0
 while row:
 templist = []
 templist.append(row.From_ID)
 templist.append(row.To_ID)
 templist.append(row.To_Z)
 templist.append(0)
 ToFromList.append(templist)

www.manaraa.com

108

 row = rows.next()
 counter +=1
 print "Finished with CreateListOfFromAndToCatchmentValues()"
 del rows, row
 return ToFromList
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error in CreateListOfFromAndToCatchmentValues()."
 sys.exit()
def SpanTheTree(ToFromList, From_ID, counter):
 #The ToFromList is sort by increasing flows to z values. This
 #funtions iterates the list and identifies any connected catchments by walking up
 #the connected graph and checking flows from -flows to values.
 #The variable counter is used to store a nominal value used to
 #identify which sinks are connected.
 try:
 for item in ToFromList:
 currentCatchment = From_ID
 for item2 in ToFromList:
 if item2[3] == 0 and item2[1] == From_ID:
 item2[3] = counter
 From_ID = item2[0]
 ToFromList = SpanTheTree(ToFromList, From_ID, counter)
 return ToFromList
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error in SpanTheTree()."
 sys.exit()
def AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList):
 #Dissolves catchments together that share connected flow by iterating the ToFromList.
 #If the catchment value exists in the ToFromList, it is assigned that new catchment ID value
 #from an item in the ToFromList which is writen to a new attribute called Catchments1.
 #If the catchment is not found in the ToFromList that polygon is asigned an arbitrary unique
 #nominal value.
 try:

www.manaraa.com

109

 CatchmentsCount = gp.GetCount_management(Catchments)
 print "\nStart AggregateCatchmentSinksToNewCatchments()"
 rows = gp.UpdateCursor(Catchments)
 row = rows.Next()
 while row:
 #Identify any catchment polygon without flow in or out (edge polygons)
 noflowpathcatchment = 0
 for item in ToFromList:
 if item[0] == row.Catchments or item[1] == row.Catchments:
 row.Catchment1 = item[3]
 #This row has flow in or out, so assign noflowpathcatchment a value of 1 and break the iteration.
 noflowpathcatchment = 1
 break
 #The ToFromList was iterated and no connective flow found, give the catchment
 #a unique catchment1 id. The CatchmentCount is used to assign a values that will not conflict
 #with the catchment1 IDs defined earlier in the code.
 if noflowpathcatchment == 0:
 row.Catchment1 = int(CatchmentsCount)
 CatchmentsCount -=1
 rows.UpdateRow(row)
 row = rows.Next()
 print "Create Catchments featureclass."
 CatchmentsFirstFill = "CatchmentsFirstFill"
 gp.Dissolve_management(Catchments, CatchmentsFirstFill, "Catchment1", "", "MULTI_PART", "DISSOLVE_LINES")
 gp.AddField_management(CatchmentsFirstFill, "Catchments", "SHORT", "", "", "", "", "", "NON_REQUIRED", "")
 gp.CalculateField_management(CatchmentsFirstFill, "Catchments", "[OBJECTID]", "VB", "")
 gp.CalculateField_management(CatchmentsFirstFill, "Catchment1", "[OBJECTID]", "VB", "")
 print "RenameFiles and Proceed."
 dummy = 1
 counter = 1
 while dummy == 1:
 newcatchment = "Catchments" + str(counter)
 print "Check for " + newcatchment
 if gp.Exists(newcatchment):
 counter +=1
 else:
 print "rename Catchments to ", newcatchment
 gp.Rename_management(Catchments, newcatchment, "FeatureClass")
 print "Rename CatchmentsFirstFill"
 gp.Rename_management(CatchmentsFirstFill, Catchments, "FeatureClass")
 print "reset dummy"

www.manaraa.com

110

 dummy = 0
 print "Finished with AggregateCatchmentSinksToNewCatchments()."
 except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
 sys.exit()
 except Exception, ErrorDesc:
 print ErrorDesc.message
 print "Error with AggregateCatchmentSinksToNewCatchments()."
 sys.exit()
##############
try:
 try:
 print "Create geoprocessor."
 gp = arcgisscripting.create()
 print "Set product type to ArcInfo."
 gp.SetProduct("ArcInfo")
 gp.overwriteoutput = overwriteoutput
 print "Check out 3D and SA extentions."
 gp.CheckOutExtension("3D")
 gp.CheckOutExtension("sa")
 print "Set workspace directory."
 gp.workspace = TheWorkingDirectory
 gp.RefreshCatalog(TheWorkingDirectory)
 starttime = time.time()
 t = time.localtime(starttime)
 print "Start Time = " + GetTime(t)
 #Script defined (required) variables. Do not alter these variable names...
 print "Define variables."
 Edges = "Edges"
 Catchments = "Catchments"
 FlowLinesAcrossCatchments = "FlowLinesAcrossCatchments"
 Nodes = "Nodes"
 BoundingPolygon = "BoundingPolygon"
 BoundingPolygonLine = "BoundingPolygonLine"
 EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries"
 FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections"
 FlowLinesAcrossCatchmentsWithFlowDirectionsLayer = "FlowLinesAcrossCatchmentsWithFlowDirectionsLayer"
 CatchmentsFirstFill = "CatchmentsFirstFill"
 NodesFeatureLayer = "NodesFeatureLayer"
 FlowLinesAcrossCatchmentsFeatureLayer = "FlowLinesAcrossCatchmentsFeatureLayer"
 startnodes = "startnodes"

www.manaraa.com

111

 startnodes_Output_Layer = "startnodes_Output_Layer"
 FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited"
 EndNodesWithCatchmentIDs = "EndNodesWithCatchmentIDs"
 FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1"
 EndNodes = "EndNodes"
 SpatialJoinOutput = "SpatialJoinOutput"
 EndNodesTemp = "EndNodesTemp"
 EndNodes_Dissolve = "EndNodes_Dissolve"
 CatchmentsFirstFillTemp = "CatchmentsFirstFillTemp"
 ListOFZValues = []
 except:
 print "Error in creating gp or declaring variables."
 sys.exit()
 #Keep doing this until the EndProgram() is called.
 while True:
 FillDonut(Catchments)
 ListOfPourPointCatchments = SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata)
 AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile)
 AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments)
 ListOFZValues = FeatureZGeometryFromAPolylineZToList(FlowLinesAcrossCatchmentsWithFlowDirections)
 WriteFeatureGeometryToTheAttributeTableLines(FlowLinesAcrossCatchmentsWithFlowDirections, ListOFZValues)
 IdentifyFlowLineOutOfSinkPolygons(FlowLinesAcrossCatchmentsWithFlowDirections)
 ToFromList = CreateListOfFromAndToCatchmentValues(FlowLinesAcrossCatchmentsWithFlowDirectionsedited)
 ToFromList = sorted(ToFromList,key=operator.itemgetter(2))
 counter = 1
 for item in ToFromList:
 currentCatchment = item[1]
 for item2 in ToFromList:
 if item2[1] == currentCatchment and item2[3] == 0:
 item2[3] = counter
 From_ID = item2[0]
 itemcounter = 0
 FromToCatchmentIDs = SpanTheTree(ToFromList, From_ID, counter)
 counter +=1
 AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList)
except arcgisscripting.ExecuteError:
 print gp.GetMessages(2)
except Exception, ErrorDesc:
 print ErrorDesc.message
 print "General Python Error."

www.manaraa.com

112

Appendix F- Surveyed Sample Locations and Surface Model Elevation Values

Survey Point
Location Elevations in Feet Above NAVD88

Longitude Latitude
Surveyed
Elevation USGS 10 M

30 ft.
Linear

30 ft.
Nat. Neig.

6 ft.
Linear

6 ft
Nat. Neig.

3 ft.
Linear

3 ft.
Nat. Neig.

1 ft.
Linear

1/2 ft
Linear

-122.6250 48.8192 15.19 13.80 14.77 14.57 14.85 14.87 14.87 14.87 14.86 14.86

-122.6120 48.8191 21.32 13.80 20.55 20.46 20.55 20.50 20.55 20.55 20.55 20.55

-122.5840 48.8190 17.50 10.94 16.72 16.51 17.13 17.15 17.19 17.20 17.24 17.24

-122.6000 48.8192 14.36 13.81 13.48 13.31 13.97 14.05 14.06 14.06 14.04 14.04

-122.6280 48.8193 10.64 7.38 10.42 10.47 10.41 10.43 10.44 10.44 10.46 10.46

-122.6420 48.8194 10.88 11.17 9.04 8.62 10.49 10.50 10.56 10.53 10.52 10.52

-122.6830 48.8485 254.86 253.66 254.27 254.31 254.42 254.43 254.45 254.46 254.45 NA

-122.6850 48.8484 265.92 267.67 265.50 265.43 265.50 265.47 265.45 265.49 265.52 NA

-122.6500 48.8484 196.72 192.81 196.04 196.24 196.42 196.41 196.45 196.44 196.47 NA

-122.6460 48.8483 197.30 192.23 196.02 195.67 196.90 197.12 197.08 197.14 197.08 NA

-122.6350 48.8483 197.51 206.02 196.19 196.10 197.01 197.03 196.98 196.99 196.99 NA

-122.6230 48.8483 221.99 217.94 220.00 220.59 221.68 221.66 221.66 221.65 221.67 NA

-122.6160 48.8484 133.50 134.82 132.39 132.66 133.16 133.14 133.15 133.19 133.20 NA

-122.6670 48.7327 11.60 9.10 10.18 10.05 10.10 10.12 10.12 10.13 10.13 10.13

-122.6720 48.7321 11.80 5.60 10.19 10.34 10.30 10.29 10.29 10.29 10.33 10.33

-122.6630 48.7313 31.18 24.61 30.33 30.23 29.97 30.00 29.95 29.96 29.95 29.94

-122.6590 48.7263 23.73 17.39 22.63 22.49 22.64 22.60 22.63 22.65 22.66 22.66

-122.6570 48.7214 16.74 9.38 14.79 15.65 15.58 15.58 15.59 15.57 15.57 15.57

-122.6550 48.7222 58.39 50.17 57.41 57.08 56.74 56.67 56.65 56.67 56.75 56.75

-122.6420 48.7290 14.22 6.03 12.20 12.55 12.74 12.73 12.74 12.77 12.79 12.79

-122.6450 48.7245 12.13 6.19 10.94 10.74 11.11 11.09 11.11 11.11 11.13 11.13

www.manaraa.com

113

-122.6470 48.7199 13.56 7.69 11.88 12.08 12.05 12.05 12.04 12.05 12.02 12.02

-122.6520 48.7173 31.64 27.84 30.34 29.80 30.76 30.82 30.84 30.87 30.87 30.87

-122.6510 48.7160 12.26 8.04 10.50 10.75 11.39 11.41 11.53 11.47 11.49 11.49

-122.6270 48.7452 27.63 25.89 25.11 25.18 25.91 25.86 25.82 26.00 26.03 26.05

-122.6360 48.7377 27.64 26.45 27.66 27.70 28.73 28.74 28.74 28.74 28.75 28.75

-122.6380 48.7332 26.28 25.96 23.47 23.50 25.35 25.34 25.36 25.38 25.37 25.37

-122.6380 48.7325 24.24 25.88 22.58 22.89 22.95 22.97 22.95 22.91 22.90 22.90

-122.6130 48.7556 53.23 48.63 50.35 50.42 48.07 48.06 47.97 48.01 48.03 48.03

-122.6180 48.7528 45.82 32.12 44.65 44.54 44.73 44.73 44.72 44.70 44.70 44.70

-122.6210 48.7499 69.23 65.53 64.76 64.80 64.87 64.85 64.87 64.86 64.89 64.89

-122.6250 48.7467 41.08 30.35 40.17 40.14 40.48 40.48 40.58 40.57 40.46 40.46

-122.6830 48.8045 47.00 56.13 46.53 46.57 46.32 46.38 46.27 46.38 46.42 46.42

-122.6240 48.7949 46.50 48.68 46.15 46.10 45.99 46.04 46.00 46.02 46.02 46.02

-122.5950 48.7960 18.40 7.24 17.95 18.19 18.58 18.51 18.55 18.55 18.56 18.56

-122.6510 48.7165 19.80 14.25 18.58 18.41 19.61 19.63 19.67 19.67 19.67 19.67

-122.6610 48.7468 147.05 155.39 145.14 145.39 145.60 145.63 145.66 145.66 145.67 145.67

-122.6390 48.7576 113.20 116.14 109.94 110.06 110.77 110.80 110.81 110.82 110.83 110.83

-122.6390 48.7468 84.65 85.93 82.98 83.20 83.30 83.27 83.26 83.28 83.27 83.27

-122.6040 48.7743 12.81 12.69 11.24 11.23 11.37 11.41 11.40 11.41 11.43 11.43

-122.6440 48.7762 34.65 18.36 32.72 32.74 32.88 32.86 32.82 32.83 32.82 32.82

-122.6280 48.7657 156.52 161.72 155.31 155.28 155.18 155.20 155.22 155.20 155.21 155.20

-122.6100 48.7619 35.13 35.11 32.51 32.93 33.64 33.62 33.66 33.64 33.66 33.66

-122.6230 48.7950 47.11 51.30 46.59 46.66 46.81 46.78 46.79 46.78 46.82 46.82

-122.6270 48.7699 119.15 112.10 118.95 119.32 119.39 119.31 119.40 119.42 119.45 119.45

-122.6490 48.7574 104.45 101.61 104.84 104.90 104.99 105.08 105.12 105.02 104.93 104.92

-122.6340 48.7578 110.36 116.31 112.89 113.45 113.85 113.88 113.87 113.90 114.09 114.09

-122.6220 48.7503 65.64 62.93 67.00 67.16 67.28 67.31 67.24 67.29 67.27 67.27

www.manaraa.com

114

-122.6120 48.7609 92.71 98.88 93.29 93.05 92.99 92.71 92.77 92.66 92.49 92.48

-122.6450 48.7794 34.12 13.92 34.06 34.10 33.92 33.95 33.91 33.91 33.90 33.90

-122.6550 48.7591 27.53 25.57 27.34 27.18 27.45 27.48 27.46 27.50 27.51 27.52

-122.6580 48.7488 146.59 145.33 145.77 145.72 146.11 146.08 146.17 146.18 146.15 146.15

-122.6550 48.7245 56.39 51.39 56.25 56.19 56.26 56.16 56.21 56.18 56.20 56.20

-122.6670 48.7429 119.28 109.96 118.96 119.06 118.90 118.95 119.02 118.97 119.01 119.02

-122.6640 48.7395 126.03 128.37 126.07 126.26 126.05 126.04 126.03 126.04 126.00 126.00

-122.6610 48.7422 145.29 155.43 145.32 145.51 145.08 145.18 145.17 145.13 145.09 145.09

-122.6550 48.7202 57.26 53.00 59.73 60.08 60.35 60.45 60.58 60.56 60.63 60.64

-122.6620 48.7425 139.73 144.69 139.68 139.83 139.67 139.66 139.66 139.65 139.62 139.62

-122.6650 48.7448 144.64 145.80 144.13 144.18 144.21 144.21 144.20 144.21 144.21 144.21

-122.6420 48.7325 32.41 43.60 31.76 31.63 32.11 32.01 32.01 32.07 32.06 32.05

-122.6320 48.7633 153.11 160.39 153.41 153.67 153.34 153.37 153.33 153.35 153.35 153.35

-122.6490 48.7538 141.88 148.20 141.89 141.86 141.94 141.93 141.96 141.95 141.95 141.95

-122.6560 48.7358 74.94 82.07 75.01 75.17 75.07 75.05 75.13 75.15 75.16 75.16

	Irregular tessellated surface model map algebras to define flow directions and delineate catchments using LiDAR bare earth sample points
	Recommended Citation

	tmp.1407187444.pdf.8Dpz2

