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Abstract 
Flow directions and catchment algorithms have historically utilized raster-based data 

models.  A significant body of literature focuses on raster-based interpolation errors, and 

the subsequent surface reconditioning to compensate for those errors, that together 

degrade the accuracy of the derived flow directions and catchments. This research seeks to 

improve upon the raster-based approach by developing and evaluating a vector-based 

approach to generating flow directions and delineating catchments that preserves the 

accuracy of the input point data through the use of irregular tessellated surface models.  

Specifically, the Python computer programming language was used in conjunction with a 

geographic information system (GIS) to develop ITSMHydro, a custom toolset that creates 

a Delaunay triangulated irregular network (TIN) from LiDAR bare-earth sample point data, 

and subsequently generates flow directions, delineates basins, and processes spurious sink 

catchments.  Surface model accuracy, and area, shape, and overlap of the resulting 

catchments were compared with catchments delineated using industry-standard raster-

based digital terrain models.  The vector-based approach implemented through 

ITSMHydro was limited to file sizes less than approximately 120,000 LiDAR strikes that 

processed in approximately 30 hours, whereas the industry-standard raster-based approach 

transformed 111,000,000 LiDAR strikes across the study area into a 3-feet pixel surface 

model and generated catchment boundaries in approximately 36 hours.  A root mean 

square analysis of surface models indicates that surface model quality is more heavily 

degraded when LiDAR sample points are interpolated to raster grids as opposed to surface 
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models relying on Delaunay TIN interpolation, suggesting that the vector-based approach 

maintains the quality and precision of the LiDAR input data.  For the four test areas in 

which the two approaches were compared, ITSMHydro generated catchments that were 

generally smaller (percent difference in areas ranged from -83.97% to 9.39%) and with 

more complex boundaries (i.e. lower isoperimetric quotient in 3 out of 4 test areas) than 

the associated raster-based catchments.  Coefficient of areal correspondence (CAC), a 

measure of overlap between catchments generated by the two methods where a value of 1 

indicates perfect overlap, ranged from 0.28 to 0.80 in the four test areas.  Given the lower 

relative accuracy of raster-based surface models evident in the study area, these differences 

suggest use of the raster-based approach may compromise accuracy in area, shape, and 

location of the resulting catchments.  A vector-based approach that preserves the accuracy 

of the input data is preferred, especially in areas of low topographic relief.  The file size 

constraints limit application of the approach developed herein, however, at least until 

technological advances and/or code revisions improve computer processing speed and file 

size capacity. 
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Section 1: Introduction 
 

The legal, cultural, and economic implications of surface water and ground water quality 

and availability necessitate high-quality boundary delineations and flow direction models for 

watersheds.   A number of commercially available Geographic Information Systems (GIS) provide 

toolsets that allow the delineation of basin boundaries using raster-based surface models 

(Garbrecht and Martz 2000; Maidment 2002).  These watershed delineation tools, in combination 

with the nationwide coverage of United States Geologic Survey (USGS) raster-based digital terrain 

models (DTM), provide a convenient and popular means for delineating watershed boundaries. 

A significant body of literature raises questions about the quality of raster-based surface 

models for delineating catchment boundaries.  Criticism stems from the over or underestimation 

of pixel values resulting from  the interpolation algorithms used to generate raster-based surface 

models, the flow direction constraints of the raster-based surface models, and limitations of raster 

cell size (Mark 1984; O'Callaghan and Mark 1984; Mark 1988; Fairfield and Leymarie 1991).  

Advances in computer processing times, data storage capacities, and surface elevation data 

collection are rapidly improving the science and practice of watershed delineation.  DTMs 

generated from higher quality and higher precision airborne-remote-sensing Light Distance and 

Ranging (LiDAR) datasets can surpass the quality of the photogrammetric techniques used to 

generate 10-meter pixel USGS digital terrain models (Campbell 2002).  LiDAR can produce a high 

density of randomly scattered sample points that can be interpolated into regular tessellated 

surface models, raster surface models, or used to build irregular tessellated surface models such as  

Triangulated Irregular Networks (TIN), and Voronoi Diagrams.  



www.manaraa.com

2 
 

The toolsets necessary to delineate catchment boundaries using vector-based-irregular-

tessellated surface models are not readily available in a GIS.  This research details the generation 

and application of algorithms that produce catchment delineations using a combination of TIN 

surface models and Voronoi diagrams generated from LiDAR bare-earth sample points, and 

compares and contrasts the catchment delineation results against raster-based surface models 

generated from the same LiDAR sample points.  The irregular tessellated catchment delineations 

are evaluated for differences in shape, area, and processing speed against industry-standard raster-

based catchment delineation algorithms.  This research addresses the question of whether 

tessellated surface models can produce a higher quality, higher precision, catchment delineation 

than the basin delineation generated from a raster-based surface model. 

This research is important to the field of geographic information sciences because the 

algorithms presented in this research do not require additional levels of data transformation or  

abstraction that can degrade the data and compromise the quality of catchment boundary. Hence, 

my irregular tessellated surface models generate higher quality catchment boundaries. Such 

catchments represent a more legally defensible delineation, and therefore may affect jurisdictional 

responsibilities with respect to water rights and other water resources-related issues.  

This thesis is divided into the following sections: a literature review, data sources, methods, 

results, discussion and conclusion.  The literature review focuses on the LiDAR data collection 

process and research into field of catchment delineations using raster-based surface models.  The 

data section details the study area and data inputs.   The methods section explaines the processing 

steps of ITSM Hydro, a Python-based series of algorithms that delineate flow direction lines and 
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create catchment boundaries using LiDAR bare-earth sample points.  The methods  section also 

details the raster-based catchment delineation methods that I used to compare and contrast the 

results of the Python algorithms and several different metrics used to assess raster-surface-model 

quality and to quantify differences in area and shape between the tessellated surface-model 

catchment delineations and the raster-based catchment delineations.  The results section contains 

maps of catchment delineations for four test areas, and the comparative metric results detailing the 

comparisons of catchment delineations for both raster and ITSMHydro methods.  The discussion 

section highlights differences between the tessellated and the raster-based delineations, and the 

limitations and conditions of the ITSMHydro tool set.  Finally, the conclusion and future work 

section is a discussion of suggested future enhancements and improvements to the tools developed 

for this research. 
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Section 2 Literature Review 
 

This literature review examines trends in GIS and geomorphometry to correct data model 

errors and extract hydrography and basin boundaries from digital surface models in a GIS.  This 

literature review will also address recent approaches to overcoming sampling error for the purpose 

of constructing higher quality surface models for the extraction of hydrographic features, and 

addressing the error introduced by the DTM.  Finally, this literature review highlights the use of 

tessellated surface data models to predict overland flow directions.   

This section is organized thus: Section 2.1 describes the LiDAR data collection process.  

Section 2.2 reviews the use of regular gridded surface models for defining flow direction surfaces, 

flow accumulation surfaces, and defining catchment boundaries.  Section 2.3 reviews the process 

of interpolating a regular gridded surface model from a random distribution of sample points and 

methods to compensate for error introduced in the interpolation process.  Section 2.4 introduces 

the concept of irregular tessellated surface models and summarizes the research on their use in 

hydrologic modeling.  

2.1 LiDAR 
 

LiDAR data is widely recognized as a means to improve the spatial accuracy and precision 

of surface elevation data over the USGS DTM.  LiDAR is a remote sensing technique wherein a 

pulse laser is attached to the bottom of aircraft containing a high-accuracy global positioning 

system (GPS), a sensor to capture the reflecting laser pulse, and an on-board computer to correlate 

the plane‟s altitude and position with the individual LiDAR pulse returns (Campbell 2002).  
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Pulses from the laser are reflected from ground surfaces (bare earth, vegetation, buildings and 

other structures on the ground) and captured by the sensor.  The onboard computer calculates the 

coordinate of the pulse strike and records the x, y, and z values based on the time difference 

between the pulse emission and the pulse return, and the known current position of the aircraft 

(Wehr 1999).  In ideal conditions, LIDAR can produce sub-meter elevation accuracy for each 

square meter of surface, which is an improvement over the 7 to15 meter error of the traditional 10 

to 30 meter DEMs interpolated using stereo-photogrammetry  techniques implemented by the 

USGS (Garbrecht and Martz 2000).  LiDAR data collection results in a point cloud, or a series of 

different LiDAR strike returns, including a first return dataset that records the upper elevation 

values of surface vegetation (a false panchromatic aerial photograph based on the strength of the 

returning LiDAR strike) and a last return, or bare-earth surface for all LiDAR strikes that penetrate 

the vegetation canopy (Campbell 2002). 

2.2 Overview of Raster DTMs in Surface Water Analysis 
 

Raster-based surface models are the dominant data structure for predicting overland flow 

directions and defining watershed boundaries within a GIS (Garbrecht and Martz 2000). Raster 

DTMs are the standard input into a number of GIS software packages such as ArcGIS, WMS, 

HEC-RAS, and GRASS (Maidment 2000).  Raster-based GIS flow direction algorithms iterate 

through the surface model matrix and computationally define flow direction based on the steepest 

slope to the surrounding coincident cells, otherwise known as the deterministic-eight-direction 

(D8) algorithm (Figure 1;Maidment 2000). The flow direction calculations are then used to 
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computationally define watershed boundaries by defining cells that share flow connectivity (Figure 

2).  

The popularity of raster-based surface models for hydrologic modeling is due to the 

availability of nation-wide DEM data sets, the rapid computer processing times of the raster data 

model within a GIS, and the limitations imposed by computer storage capacities (Garbrecht et al. 

2001).  Limitations of data availability, computer processing speeds, and data storage capabilities 

have historically outweighed the facts that cell resolution, overestimation and underestimation of 

cell values due to interpolation, and flow direction constraint (to eight cardinal directions) of the 

raster data model each degrade the quality of the flow direction and watershed boundary 

calculations.  In areas of high topographic relief, the errors in raster-based flow directions due to 

cell resolution, interpolation, and flow direction constraints are less pronounced since flow is 

typically unidirectional and flow paths converge to a single discharge point (Jones 2002).  In areas 

of low topographic relief, however, subtle differences in elevation values compound with 

 

Figure 1 A typical raster DTM 
showing the resulting D8 flow 
direction calculations. 

 

Figure 2 Flow direction calculations 
and the resulting basin delineation 
line in blue. 
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interpolation uncertainty and increase the number of artificial sink cells (cells with no outflow), 

limiting the quality of flow direction certainty across the surface model (Jones 2002).   

2.3 Raster DTM Creation, Interpolation, Resolution, and Correction 
 

Garbrecht and Martz (2000) provided a succinct overview of the issues affecting the 

definition of stream channels and the delineation of watershed boundaries based on raster DTMs.  

The authors excluded from their discussion areas influenced by urban development, which might 

alter surface flow patterns.   

A number of issues limiting accuracy were highlighted in the paper including: (1) three 

quality levels of USGS DEMs and the techniques used to generate DTMs of those qualities; (2) 

how USGS DEMs store integer values for elevation, which in turn limits slope calculations and 

subsequently flow directions in areas of low spatial relief; and (3) cell resolution, or pixel size.  Cell 

resolution is a critical issue with DTMs because cell resolution affects the number of sinks, or pits, 

i.e., cells that do not have flow out paths.  Pits are a problem exacerbated by low cell resolution 

and low topographic relief that leads to incomplete drainage patterns.  Cell resolution also affects 

the resulting stream length, with low-resolution DTMs producing shorter stream lengths than the 

actual channel.   

Garbrecht and Martz (2000) also highlighted some issues with the D8-direction-flow-path 

algorithm common in most GIS applications.  Because flow is restricted to only one of eight 

cardinal directions, divergent flow is not captured in areas of low spatial relief over convex slopes, 

resulting in biased flow directions.  The authors acknowledged that if the intended outcome is a 
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watershed delineation, the D8 is an adequate choice over multiple flow path algorithms.  Sink 

cells, whether actual or artificially generated by DTM interpolation, are problematic for the D8 

regardless of whether they are a result of over- or underestimations of cell value.  A number of 

techniques, including an artificial computational leveling of sinks to enforce hydraulic connectivity 

(filling) or a computational lowering of obstructions (breaching) were mentioned, but specific 

methods were not discussed in detail.  Finally, the authors stated that methods to define flow 

across flat areas, whether actual or artificially created, are elusive and the user will have to „contend 

with approximations.‟ 

Barber and Shortridge (2005) addressed the issue of raster cell resolution in a comparative 

analysis of the hydrography and watershed boundary results from a 6-meter cell LIDAR-generated 

raster surface model compared with standard 30-meter USGS National Elevation Dataset (NED) 

DTMs.  Barber and Shortridge compared the results in an area of high spatial relief and an area of 

low spatial relief in North Carolina using the standard hydrography toolset found in a popular 

GIS system, ESRI ArcGIS 8.   For both the LIDAR and NED data, stream networks were 

calculated, random sample points field-validated, and the resulting values compared statistically 

between the different ArcGIS hydrologic model outputs produced by the authors.  Barber and 

Shortridge found that the LIDAR surface model did not produce significantly better results for 

stream networks, but it did show a modest improvement in watershed boundaries, especially for 

the area of low relief.  Barber and Shortridge mentioned the error introduced by surface feature 

artifacts like bridges, but the investigators do not describe the implementation of fill procedures or 

stream burning. However, the metadata for the 20 meter LIDAR DTM produced by the state of 

North Carolina (from which the author‟s 6-m DTM was interpolated) indicates it was corrected for 
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known bridges.  Furthermore, the interpolation method used is a potential source of error 

(Wechsler 2007) and likely skews the stated results of this paper. 

Haile and Rientjes (2005) focused mainly on the issues of DTM interpolation and cell 

resolution to address issues in modeling the effects of flooding.  Beginning with a 1.5-meter 

resolution LIDAR-derived surface model, the researchers employed a number of re-sampling 

methods to derive lower resolution surface models.   The lower resolution surface models were 

then compared for computer processing time and the accuracy of the model hydraulic outputs.  

For example, a resampled 15-meter DTM took approximately 1 day to process in their flood 

inundation model, which included the generation of surface flow patterns, while a 2.5-meter DTM 

took 13 days to process (1.5GHz Pentium IV).  The resulting inundation area was significantly 

affected by the raster cell size, with the coarse 15-meter DTM showing a 3-fold increase in 

inundated depth compared to a 5-meter resolution DTM.  The authors employed nearest 

neighbor, bilinear, and bicubic resampling techniques and generated a range of different output 

cell sizes, and the elevation differences of the new surfaces were compared against the original 1.5-

meter surface.  For all three resampling methods, the 4.5-meter raster resulted in a mean ~0.54 

meter overestimation, and the 10-meter DTM was associated with an underestimation of 0.14-0.45 

meters.  While this article is a good treatise on the different resampling methods and processing 

times, and althoughthe authors made a strong case that model accuracy is related to DTM cell size, 

the authors never stated the total relief of the study area to give the reader an indication of the 

significance of the differences in the interpolation comparisons (Haile 2005). 

Wechsler (2007) provided a succinct cautionary outline of the fundamental problems 

associated with the DTM data structure.  Wechsler systematically addressed DTM sampling error, 
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differences in the algorithms used to derive surface features, DTM grid resolution, interpolation 

from the raw sample data to a raster DTM, and the use of surface modification to enforce flow 

connectivity as potential constraints on any watershed analysis.  The most pertinent information 

he provides is the application of a Monte Carlo simulation to evaluate the bias introduced through 

the filling of the DTM to remove pits.  When filling a DTM, an algorithm passes over each DTM 

cell and identifies which cells are lower than the eight neighboring cells; if a cell is identified as 

lower than its neighbors, the cell is marked as a sink, or depression.  The fill process 

computationally corrects the z-value of the sink to ensure that there will be flow connectivity across 

the DTM; that is, the z-value of the cell is raised to equal the elevation of its neighbors, thereby 

enforcing flow connectivity.  Wechsler‟s work showed that filling the DTM influences slope and 

alters the flow regime of the original surface, and he demonstrated that the problem of surface 

abstraction is aggravated in areas of relative flatness, like agricultural fields. 

Similarly, Lindsay and Creed (2005) addressed error introduced through the process of 

filling DTMs, but they also presented a method to reduce error associated with removing 

depressions from the surface model.  When breaching, the connectivity of the sink cell with 

surrounding cells is enforced by lowering the z values for any cells that form an obstruction 

between the sink and cells at a predefined distance from the sink.  Neither filling (the raising of 

sink cells) nor breaching (the lowing of obstruction cells) provides a useful way to enforce flow 

connectivity alone since the utility of each fill or breach depends on the cause of the sink, which is 

an unknown.  For example, if the sink is a result of an underestimation of the cell value, then 

filling is the preferred method, and if the sink is a result of an overestimation of neighboring cells, 

then breaching is the preferred method.  Lindsay and Creed acknowledged the shortfalls of filling 
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and breaching and then presented a method called the impact reduction approach (IRA) to 

overcome this shortfall.  From the initial surface model, the IRA generates two additional copies of 

the surface model and one result raster at the same spatial extent of the original surface.  All sinks 

are filled in the first surface model copy and breached in the second copy.  The two new surfaces 

are analyzed computationally on a cell-by-cell basis, comparing the number of fills/breaches and 

the mean absolute difference from the original surface.  The resulting number is written to the 

result raster.  The result raster is iterated cell-by-cell and the resulting values determine a fill or 

breach of the coincident cells of the original surface model.   After a substantial and detailed 

statistical analysis of the differences in the fill/breach methods, the authors concluded that the 

filling method typically employed in commercial GIS software packages greatly impact the derived 

terrain attributes, particularly in areas of flat bottomlands.  The authors showed that their IRA 

method is a substantial improvement in the construction of hydrologically enforced surface 

models. 

 

2.4 Overview of Irregular Tessellated DTMs  
 

Two tessellated data structures for representing a continuous elevation surface are the 

Triangulated Irregular Network (TIN) (Peucker et al. 2002), and Voronoi diagram (VD) (Gold 

1989).  With a TIN, a given a set of scattered elevation sample points become nodes in the TIN 

mesh, and the nodes are connected by lines which form triangles, all of which share a topological 

relationships with their adjacent neighbors (Figure 4;Peucker 1977).    TIN surface models in 

Environmental Systems Research Institute (ESRI) GIS software package ArcGIS utilize a Delaunay 
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algorithm which result in short triangle facets that satisfy the criterion that, for any triangle, a 

circumscribed circle that intersects the triangle nodes will not contain nodes from any coincident 

triangles (Figure 3).   

 

Figure 3 For each triangle in a Delaunay 
TIN, a circle that intersects the triangles 
nodes will contain no other nodes (de Berg 
2008). 

 

 

Voronoi diagrams (VDs), or Thiessen Polygons, can also be used to represent surface 

elevation.  VDs define an asymmetrical polygon region around each sample point such that any 

area bound by the Voronoi polygon is closer to the sample point than any other sample point 

(Gold 1989). Because polygon coverage is continuous over the surface, the inherent topological 

relationship between adjacent polygons in the data structure lends itself to spatial modeling (Gold 

1997).   

A number of triangulation algorithms exist which will result in different triangulations for 

the same points, for example, to minimize or maximize triangle angles, and quadtree(Sack 2000).  

The edges in a Delaunay triangulation, or triangle sides, connect nodes that share the same spatial 
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relationship as the adjacent polygons of a Voronoi diagram created from the same nodes where 

other triangulation methods do not maintain this relationship (Figure 4). TIN surface models are 

gaining popularity in the GIS community as researchers gain access to the popular LiDAR 

elevation sample data, but the tools to use TINs in hydrologic modeling are not readily available to 

GIS users.   

Gehegan and Lee (2000) provided a clear overview 

of the different types of tessellated surfaces, focusing their 

research on the Voronoi diagram.  The authors made the 

argument that the raster-based surface and the interpolation 

needed to derive the DTM lose important information 

contained in the collected discrete point data.  Most 

notable are the loss of spatial relationships between the 

adjacent sample points and the relative difficulty in 

updating or changing the surface model.  While the 

authors recognized the utility of the DTM, they raised the 

concern that the DTM might not be the best surface model for all applications. They suggest that 

ordinary Voronoi diagrams (all areas closest to the sample point), farthest Voronoi diagrams (all 

areas farthest from the sample point), higher order Voronoi diagrams (two or more points are 

bound by the polygon), and Delaunay triangulations provide the file architecture necessary to 

avoid DTM abstraction.  When describing the creation process of the tessellations, the article 

provides the fundamental methodology necessary to construct flow convergence networks from the 

 

Figure 4: shows the relations ship 
between the Voronoi diagram (red), 
and the TIN edges (black).  The 
TIN edges connect the nodes of 
adjacent Voronoi polygons (de Berg 
2008). 
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tessellations through an iterative process of sample point selection, coincident Voronoi polygon 

selection, attribute retrieval, and attribute recalculations.   

Dakowicz and Gold (2007) employed the use of Voronoi diagrams to model surface runoff 

using tessellations and stated that the tessellation approach bypasses a number of the abstractions 

imposed by the DTM, namely the error introduced by interpolation, the loss of the original sample 

points, and the flow direction constraints imposed by the D8 algorithm.  Dakowicz and Gold used 

a series of sample points to create a TIN surface and a Voronoi diagram.  They calculated the area 

of each Voronoi cell, determined the rate of precipitation, calculated the rate of flow from each 

cell to its downslope neighbor from the TIN edge, and passed the volume over time to the 

downslope-Voronoi polygon.  While Dakowicz and Gold provided a simple argument for using 

tessellations to determine flow directions, what they fail to state in the article are specific methods 

for how the tessellated data structure permitted the surface runoff simulation to pass information 

to the downslope cell.  The Dakowicz and Gold Voronoi model does bypass the sink problem 

since precipitation volume per Voronoi cell over time is passed to its downhill neighbor, and when 

the height in the Voronoi exceeds the pit height, flow passes down slope.  Although not reviewed 

here, Li and Piltner (2004) suggested that the file architecture of the tessellated surface 

incorporates a related database record for each individual tessellation, and that this database allows 

the storing, altering, and adding of attribute information, which can be returned for this type of 

iterative analysis.  Dakowicz and Gold may have used attribute passing to overcome computer 

memory limitations in their analysis, but they failed to mention the computation time needed to 

accomplish the attribute passing, or the areal extent of their research area, which might influence 

model execution times.  It is widely acknowledged that DTM-based processes are executed faster 
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than vector-based processing, but at a sacrifice of spatial accuracy.  Providing some statistical 

information of the processing time per area would have indicated whether the tessellation 

approach is computationally feasible with a commercially available desktop computer for 

hydrologic modeling. 

Finally, Tucker (Tucker et al. 2001) described a set of tools used to develop a distributed 

rainfall-runoff model using TIN data structures generated with a Delaunay triangulation and the 

associated Voronoi diagram.  This article gives a detailed overview of the topological relationship 

among TIN objects (nodes, edges, and triangles).  Each node stores a pointer to the incoming edge 

and the outgoing edge, each edge has a pointer to both nodes and both triangles, and each triangle 

has pointers to its nodes, edges, and coincident triangles.  This set of pointers is exploited in 

several examples of pseudo-computer code to define flow path based on the relationship between 

the TIN edges of the underlying Voronoi diagrams.  The topological relationship between TIN 

nodes is used to define flow directions, while at the same time the TIN node‟s corresponding VD 

area is returned and passed to the downstream TIN node.  The VD areas are summed and used to 

define the total contributing watershed area. 
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Section 3: Data  

This section describes the study area and the data inputs including data sources.  LiDAR 

bare-earth sample data for a northwestern section of the USA are arbitrarily selected as sample data 

to test algorithms that utilize irregular tessellated for the purpose of generating catchment 

boundaries.  These data are intended to address and bypass issues of error by raster interpolation, 

constraints of raster-based flow routing routines, and pixel resolution as introduced by the raster-

based surface model.  Section 3.1 details specific information about the study area, section 3.2 

describes the data including the LiDAR source and quality and other contributing datasets used to 

produce the highest quality raster surfaces and validate the quality of the raster surfaces used to 

compare and contrast results. 

3.1 Study Area 

The study areas for this thesis are those lands that contribute to overland flow onto the 

Lummi Indian Reservation, located near Bellingham, Washington (Figure 5), at approximately 

48.79N degrees latitude and -122.62W degrees longitude.  The Lummi Reservation is best 

described as Puget Sound lowlands, including forested uplands, agricultural fields, cleared or 

partially forested floodplains, river deltas, and rural residential density with some concentrations of 

housing developments.  The Lummi Reservation, and the adjacent non-Reservation lands, typically 

has low topographic relief, with a maximum elevation of 600 feet and a mean elevation of 80 feet 

over the 36.69 square mile study area. 
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Figure 5: The Lummi Reservation shown in orange and the extent of LiDAR coverage (shown 
in green).   The vendor-provided LiDAR data was edited to exclude any sample point lower 
than the mean higher high water line (NAVD88 vertical datum), and east of the Nooksack 
River. 
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3.2 DATA 

 Between March 6th 2005, and May 4th, 2005, LiDAR data were collected and processed by 

Terrapoint USA Inc. of The Woodlands, Texas (Terrapoint).  Terrapoint used a 40 kHz ALTMS 

(Airborne Laser Terrain Mapping System), a Trimble 4700 GPS receiver, a Honeywell H764 IMU,  

and two Sokkia GSR2600 dual frequency GPS receivers mounted to a fixed wing aircraft averaging an 

elevation 3500 feet to collect LiDAR data. The Terrapoint Project Report reports the following 

accuracies (Terrapoint 2005): 

Accuracy is as follows, quoted at the 95% confidence level (2 sigma),  

Absolute Vertical Accuracy:  

+/- 15-20 centimeters on Hard Surfaces (roads and buildings)  

+/- 15-25 centimeters on Soft/Vegetated Surfaces (flat to rolling terrain)  

+/- 25-40 centimeters on Soft/Vegetated Surfaces (hilly terrain)  

Absolute Horizontal Accuracy:  

+/- 20 – 60 centimeters on all but extremely hilly terrain.  

Contour Accuracy:  

2ft Contour National Map Accuracy Standard (NMAS) 

 

All horizontal coordinate data were collected and referenced to North American Vertical 

Datum of 1988 (NAVD88) and delivered in US State Plane Zone Washington North with coordinate 

and elevation values listed in US Survey feet. Space-delimited text files of bare-earth sample points 

provided by Terrapoint were transformed into ESRI shapefiles.  The resulting shapefiles were manually 

edited to exclude marine waters below the NAVD88 mean higher high water (MHHW) tidal line.  

Figure 5 shows the extent of LiDAR data coverage (show in green) after those marine waters lower 
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than the MHHW line were removed from the dataset to reduce overall file size and computer 

processing time. 

In 2006, Lummi Indian Business Council (LIBC) GIS staff used 6 ft. bare-earth raster DTM 

surface models provided by Terrapoint, coupled with 2006 Pictometry imagery, to edit an existing 

surface-water-hydrography data set, including stream and river networks and agricultural drainage 

ditches, to conform to channels apparent from the DTM and the aerial imagery. 

In 1998, an LIBC staff hydrologists and LIBC Water Resource Division staff conducted a field 

inspection of all areas of the Lummi Reservation (Reservation) to identify the location of storm water 

facilities (culverts, tide gates). The positions of storm water facilities were captured using a mapping 

grade Trimble GeoXT Global Positioning System (GPS). Similarly, a survey of storm water facilities was 

conducted by the Whatcom County Public Works (WC) department to capture the point locations of 

storm water facilities off Reservation. An ESRI geodatabase-point-feature-class was provided by 

Whatcom County, but no further detail are known about these WC data.  
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Table 1: GIS data summary.  This table details the spatial datasets utilized in this research. 
LiDAR point locations were either used directly in the ITSMHydro analysis, or used to create 
raster surface models.  Hydrography and storm water facility data were used to hydrologically 
correct raster surface models, and survey point data were used to assess the quality of the raster-
based surface models. 

Data Provider Description Data Type Data Model Use 

Terrapoint USA Inc. 
Post processed LiDAR 
bare-earth sample 
points. 

Text 
Tab delimited text 
files 

Surface model 
creation. 

Lummi Indian 
Business Council 

Hydrography, rivers, 
streams and irrigation 
ditches. 

Vector ESRI line Shapefiles 
Surface model 
reconditioning. 

Lummi Indian 
Business Council 

On-Reservation storm 
water facilities 
(culverts) 

Vector ESRI point Shapefile 
Surface model 
reconditioning. 

Whatcom County 
Off-Reservation storm 
water facilities 
(culverts) 

Vector 
ESRI Geodatabase 
point feature class 

Surface model 
reconditioning. 

Pacific Surveying and 
Engineering 

Surveyed elevation 
control points. 

Vector ESRI point Shapefile 
Surface model 
evaluation. 

Aspect Engineering 
Surveyed elevation 
control points. 

Vector ESRI point Shapefile 
Surface model 
evaluation. 
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Section 4: Methods 
 

This section details a sequence of geoprocessing tools developed in the Python 

programming language that interface with ERSI ArcGIS v9.3.1- v10 to delineate flow direction 

lines and catchments from a random distribution of sample points.  The toolset, collectively called 

Irregular Tessellated Surface Model Hydrography (ITSMHydro), requires the generation of a 

geodatabase workspace and a TIN surface model to facilitate the spatial relationship and 

geoprocessing of neighboring sample points (ESRI 2010).   This section also details the methods 

used to create and assess the quality of several raster-based surface models using different pixel 

resolutions and interpolation.  The raster surface models provide an industry-standard benchmark 

against which to compare the ITSMHydro catchment delineations.  Known watercourses and 

storm water facilities serve to hydrologically correct the raster surface models prior to catchment 

delineation using established ArcGIS ArcHydro methodologies to maximize the quality of the 

raster delineations.   

Subsections 4.1 and 4.2 detail the preprocessing steps required for execution of the 

ITSMHydro tools, including the creation of a geodatabase workspace to hold model output files 

and the creation of a bounding polygon to define the analysis extent.  Subsection 4.3 describes the 

methods used to create a hydrologically corrected TIN that „burns‟ stormwater facilities and known 

stream networks into the TIN surface model.  Subsections 4.4 – 4.7 summarize the ITSMHydro 

Python algorithms which, respectively: (1) export  TIN nodes (LiDAR sample points), edges (lines 

connecting LiDAR points) and polygons (triangles formed by the TIN generation process) into the 

ESRI file-geodatabase data workspace; (2) generate a new feature class of flow direction lines that 
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describes the steepest path of descent from each LiDAR point; (3) utilize the flow direction lines to 

create catchment boundaries for each set of connected flow direction lines; and (4) fill sinks. 

Subsection 4.8 outlines the methods used to create a series of raster surface models using different 

pixel resolutions and interpolation methods, assess the quality of those raster surface models, and 

generate catchment boundaries from the highest quality surface. 

4.1File Geodatabase Creation 
 

An ESRI feature dataset within a geodatabase is required to store all geoprocessing outputs 

from ITSMHydro. No specific naming conventions are required for the feature dataset or the 

geodatabase.  ITSMHydro was tested using ESRI file geodatabases due to the improved 

performance and file storage capacity of the file geodatabase over the Microsoft Access personal 

geodatabase (ESRI 2010). 

4.2 Bounding Polygon Creation 

A user-defined bounding polygon must be stored within the feature dataset prior to the 

ITSMHydro code execution.  This bounding polygon defines and limits the extent of the analysis 

area.   

4.3 TIN Creation 
 

For consistency with the methodologies that generate the raster surface models used to 

evaluate the ITSMHydro basin delineations, hydrologically-corrected Delaunay TINs were 

generated to establish hydrologic connectivity. Delaunay TINs were choosen over other 

triangulations methods because the Delaunay TIN polygons maintain the same spatial adjacent 
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relationship between LiDAR points as the ordinary Vorinoi diagram, thus providing a way to 

identify those points most spatially related.    

LiDAR technology cannot capture the flow path of storm water facilities underneath roads 

because those flow paths are blocked from the aerial view of the LiDAR beam.  To enforce 

hydrologic connectivity in those areas traversed by raised road beds, „culvert burning‟ was used to 

establish flow paths through storm water facilities (Duke 2003).  A 50-feet buffer polygon around 

each storm water facility point was created to sufficiently span the width of raised roadbeds.  A 

new attribute was added to the resulting 50-feet buffer polygons and assigned a value equal to the 

lowest elevation value recorded in the TIN.   The 50-feet buffer polygon feature class was used for 

TIN creation as shown in  

 

 

Table 2 to replace any LiDAR nodes bound within the 50-feet polygons.  Hydrography data 

provided by the Lummi Nation were also used to enforce hydrologic connectivity by stream 

burning the stream course into the TIN.   The ArcGIS editing tool divide was used to insert vertices 

in the stream courses at 3-foot intervals.  The stream line‟s vertices were converted to a point 

feature class.  A new attribute column was added to the point feature class as a numerical data 

type.  This new numeric attribute was populated with descending values beginning with -1, and 

descending -1 foot for each point along the line course.  The points served as an input to create a 

TIN file using the artificially generated numeric values as the z values as input parameter for the 

new TIN as shown in  
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Table 2.   

 

 

 

 

Table 2: Input data to create a hydrologically corrected TIN surface. This table shows which 
datasets served as input parameters for the construction of raster surface models.  Column one 
lists the data set name, column two shows which value from the attribute table contributed 
elevation values for raster creation, and column three lists the ArcGIS parameter name, where 
mass point contribute are evaluated as TIN nodes, hard lines contribute z values with no TIN 
interpolations occurring across the line, and hard replace replaces any TIN values bound 
withing the polygon. 

Feature Class Z values Used Input Type 

LiDAR points Attribute z Mass Point 

Stream Division  Points Attribute z Mass Point 

Stream None Hard Line 

Storm Water Facilities 
Buffer 

Attribute z Hard Replace 

Bounding Polygon None Hard Clip 

 

4.4 LOAD TIN COMPONENTS 

ITSMHydro requires the extraction of the TIN geometry as points, triangles, and triangle 

edges into the feature dataset.  The Python/geoprocessing tool 

0_LoadDataFromTINToGeoDataBase.py (Appendix 1) automates the TIN component extraction 

process and ensures the correct naming conventions for nodes, triangles, and edges required by all 
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ITSMHydro tools.  Input parameters for the 0_LoadDataFromTINToGeoDataBase.py tool include 

the path to the TIN and the path to the feature data set.  0_LoadDataFromTINToGeoDataBase.py 

also requires the user to set the output feature classes coordinate geometry resolution equal to the 

precision of the original LiDAR data, thus guaranteeing all node geometries are coincident (ESRI 

2010). 

0_ LoadDataFromTINToGeoDatabase.py extracts feature classes called nodes, edges, and 

triangles from the TIN and stores them in the feature dataset using ArcGIS methods available in 

Python using the ArcGIS Application Programming Interface.  After importing the required 

ArcGIS libraries, 0_LoadDataFromTINToGeoDatabase.py loads the required ESRI 3D analyst toolset 

into Python.  Prior to execution, the user must define the script variables for the working 

directory, the path to the feature dataset, the x, y, z resolution, and the path to the TIN.  The 

resolution settings shown in Appendix A were set to a precision that matched the LiDAR point 

text files recorded in hundredths of feet.  Finally, the TIN edges (TIN triangles  as lines) , TIN 

nodes (the LiDAR bare-earth sample points), and the TIN triangles are extracted from the TIN 

and stored in the feature dataset as ESRI point, line, and polygon vector data models.  
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Figure 6: The working directory after 
0_ 
LoadDataFromTINToGeoDatabase.py 
execution. 

 

 

 

Figure 7: The resulting edge and node feature 
classes generated by 
0_LoadDataFromTINToGeoDatabase.py. 

 

4.5 TIN FLOW DIRECTIONS 

The second algorithm 1_FlowDirectionsFromTIN.py (Appendix B) utilizes the node and edge 

components from a TIN surface model to generate a new feature class called FlowDirections.  Figure 

8 shows an abridged version of the processing steps of 1_FlowDirectionsFromTIN.py. The resulting 

FlowDirections feature class represents the steepest path of descent from each node to its adjacent 

neighbors as defined by the triangulation.   
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Figure 8: An overview of the processing steps of 1_FlowDirectionsFromTIN.py. 

 

For each LiDAR point, the feature geometry and the x, y, and z values are written to a 

Python list data type.  Similarly, the feature geometry of all edges are written to another Python list 

(the line‟s start node and end node coordinate values).  For each LiDAR point, every line that 

shares a coordinate value equal to the LiDAR point is connected to that LiDAR point.  Lines with 

a distal-end z value higher than the LiDAR point‟s z value cannot represent flow away from that 

LiDAR point and are ignored.   If the line‟s distal-end z value is lower than the z value of the 
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LiDAR point, that line represents a potential flow path away from the LiDAR point.  The distance 

formula (equation 1) is used to calculate the edge length based on the line‟s start and end node x 

and y values.  The line‟s z values are used to calculate a rise by subtracting the higher z value from 

the lower z value, which is then converted into the percent slope (equation 2).  The percent slope 

value of each line is appended to the Python list of edge coordinate values. 

 

 

d = distance 

(x1, y1) = coordinate geometry of node. 

(x2, y2) = coordinate geometry of opposing line end. 

Equation 1 The distance formula for calculation the distance between two coordinates. 

 

    
    

   
 

Equation 2 Formula for calculating the percent slope of a line where run is the value of d from 
equation 1. 

The list of lines that represent potential flow paths away from the LiDAR point are sorted 

in ascending order based on the percent slope value.  The last item in the list is that line with the 

steepest path of descent away from the LiDAR node.  The coordinate geometry associated with 

these steepest path lines is converted to a new feature class in the geodatabase called FlowDirections.  

The resulting FlowDirections feature class represents lines of the steepest path of descent from each 

node to its adjacent neighbors defined by the Delaunay triangulation.  After code execution, the 
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working directory will contain the feature classes detailed in Figure 9, including the newly created 

FlowDirections feature class (Figure 10). 

 

4.6 TIN DTM BASIN DELINEATION  

Given the flow direction outputs of the 1_FlowdirectionFromTin.py tool, an algorithm is 

used to generate a polygon boundary that encapsulates those flow direction lines that share 

connectivity, and therefore represent a catchment boundary for those connected flow direction 

 

Figure 9: Shows the contents of the 
working directory after execution of 
1_FlowDirectionsFromTIN.py. 

 

 

Figure 10: The flow direction lines generated by 
1_FlowDirectionsFromTIN.py. 
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lines.  The algorithm 2_CreateCatchmentPolygons.py (Appendix C), utilizes the node, edge, and 

triangle components of the TIN, and the newly generated FlowDirections feature class, to generate a 

new polygon feature class called Catchments.  Those areas bound by the resulting Catchments 

feature class represent those areas that contribute to overland flow to a single pour point.  Figure 

11 shows an abridged version of the processing steps executed by 2_CreateCatchmentPolygons.py. 

 

Figure 11: An overview of the geoprocessing steps of 2_CreateCatchmentPolygons.py. 

 

A Python list stores the coordinate geometry of each flow direction line.  Using the Extract 

Line Vertices to Points method in ArcGIS, all line end nodes and start nodes are exported to two 
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new point feature classes.  Any end point that is not coincident with a start point represents the 

location of a pour point for that catchment.  These points are selected from the feature class of 

vertices and their feature geometry is written to a new Python list.  The list of points are sorted in 

ascending order based on z values.  For each point item, all lines that intersect that pour point are 

assigned a catchment ID integer value starting with one.  The coordinate values of these lines are 

passed into a Python function that identifies any connected upstream lines.  This process is 

repeated recursively, thereby „walking up‟ each branch of the Flow Direction geometry, assigning the 

same catchment ID to each branch of the flow direction lines.  After all connected flow direction 

lines are assigned the same catchment ID value for that pour point, the next pour point is selected 

from the pour point list, one is added to the catchment ID, and the process repeats until all lines 

have been assigned a catchment ID.  Based on the catchment ID, a new feature class is created 

called FlowDirections_CatchmentGrouped (Figure 12).   
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Figure 12: The grouped flow 
direction lines generated by 
2_CreateCatchmentPolygons.py. 
 

 

 
Figure 13: The areas in 
purple show those areas that 
exist on the periphery of any 
group of flow direction lines 
and represent those areas 
that contain catchment 
boundaries.  The lines shown 
in gray are the Voronoi 
polygons generated from the 
vertices of the purple area. 

 

 
Figure 14: Final catchment 
delineations and grouped 
flow directions lines. 

 

The FlowDirections_CatchmentGrouped feature class is spatially joined with the TIN triangle 

polygons using the ArcGIS spatial join method.  A resulting attribute of the spatial join is a join 

count, which holds the number of FlowDirections_CatchmentGrouped features each triangle touches.  

Any triangle that intersects only one FlowDirections_CatchmentGrouped feature has a join count of 

one, any triangle that is adjacent to more than one FlowDirections_CatchmentGrouped feature has a  

join count of two or more.  Join counts greater than one indicate triangles that exist on the 

periphery of two or more basins.  The vertices of triangles with join count greater than one are 

converted to Voronoi polygons (Figure 13).  The Voronoi polygons are then spatially joined to 

FlowDirections_CatchmentGrouped feature class and dissolved based on the basin ID values. The 
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resulting feature class called Catchments defines catchment boundaries around each group of 

connected flow lines (Figure 14).  After code execution, the file geodatabase will show the feature 

classes detailed in Figure 15; users can define a setting in 2_CreateCatchmentPolygons.py to delete 

temporary files no longer required by ITSMHydro (Figure 16).   

 

 

Figure 15: Working directory showing all files 
generated by 2_CreateCatchmentPolygons. 

 

Figure 16: A user defined setting in 
2_CreateCatchmentPolygons.py will delete 
temporary files from the working directory no 
longer required by ITSMHydro. 

 

4.7 SINK PROCESSING 

LiDAR data may contain spurious pits or sinks, i.e., nodes that have a z value lower than 

the surrounding LiDAR points and, therefore, have no connected outflow path.   The algorithm 

3_AggregateSinkCatchments.py (Appendix 4) merges those sink polygons with adjacent basin 
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polygons by assuming that all sink catchments will puddle, fill to capacity, then pour into one of 

the adjacent polygons based on the path of least resistance defined by the triangle edges.  A sink 

catchment is defined as any catchment delineation that does not intersect the bounding polygon.  

Sink catchments are merged with one-and-only-one adjacent catchment. Figure 17 shows an 

abridged version of the processing steps executed by 3_AggregateSinkCatchments.py. 

 

Figure 17: An overview of the geoprocessing steps executed by 3_AggregateSinkCatchments.py. 

 

3_AggregateSinkCatchments.py first identifies any polygon that forms an annulus and deletes 

the feature geometry of the interior portion of the annulus and the catchment delineation that fills 

the inner portion of the annulus.  All lines that cross the catchment boundaries are selected from 

the data set of edge lines, and the feature geometry of those edge lines are written to a Python list.  

The lines that cross catchment boundaries are spatially joined with the basin Object ID, resulting 
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in two values: the catchment ID from which the edge line originates and the catchment ID to 

which the edge line flows.  Any line that originates and terminates in the same catchment is 

removed from further computations.  From the remaining lines, that line which has the lowest z 

value out of the catchment is selected as the flow path away from the sink polygon (Figure 18).   

 

Figure 18: This surface has two sinks.  The 
yellow lines are those edge lines with a 
direction of flow away from the sink.  The red 
lines are the first path water would take out 
of the sink if the sink were filled with water. 

 

 

 

Figure 19:  The final delineation is called 
catchments in the working directory.  The 
catchment delineation shown in figure 18 
was renamed to catchments1.  All 
numerically numbered catchment feature 
classes are retained in the working directory. 
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If there is more than one line that has the same lowest z value, that line with the steepest 

path as defined by the line‟s slope is selected as the steepest flow path.   A new Python list is 

generated to store the ID of the sink and the ID of the catchment that receives its flow.  The sink 

with the lowest z value flow path is assigned a nominal identifier; the neighboring recipient basin 

is assigned the same nominal identifier.  This process is repeated recursively until all connected 

polygons have been assigned the same nominal identifier. This recusion process loops until 

allpolygons have been assigned a nominal value.  All polygons that have the same nominal value 

are dissolved together.  The feature class called Catchments is renamed Catchments n, and this 

process loops until all catchment polygons touch the user-defined bounding polygon.  The final 

feature class defining catchment boundaries is called Catchments (Figure 19).  For each iteration, a 

feature class called Catchments n is written to the geodatabase (i.e., Catchments 1, Catchments 2, 

Catchments 3…).  After code execution, the file geodatabase will show the feature classes detailed 

in Figure 20 (see Figure 21 for file structure with the “delete temporary files” setting invoked). 
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Figure 20: Working directory showing all files 
generated by 3_AggregateSinkCatchments.py. 

 

 

Figure 21: Working Directory showing all 
files generated by 
3_AggregateSinkCatchments.py using the 
“delete temporary files” setting. 

 

4.8 RASTER DTM CREATION AND BASIN DELINEATION  

 This sub-section details the methods used to create raster DTMs and delineate catchment 

boundaries from LiDAR data using the raster-based geoprocessing tools in the ArcGIS 9.3 

ArcHydro extension.  Different pixel cell size and interpolation method combinations are used to 

identify which raster surface model produced the highest-quality raster DTM for the purpose of 

evaluating the ITSMHydro catchment delineation tools detailed in sections 2.2 – 2.5.  The LiDAR 

points were used to create an ESRI Terrain data model.  From that terrain data model, eight ESRI 

Grid surface models were created using five different pixel sizes and two different interpolation 

methods available in the ArcGIS v 9.3 software package (Table 3).  While there are many different 

types of interpolation algorithms, the natural neighbors and the linear interpolation methods were 

selected because these two interpolation methods are default parameters for the ESRI Terrain to 

Raster conversion tool. 
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Table 3 Surface model cell resolutions and interpolation methods.  Column one lists the pixel 
resolution, column two details the interpolation method used to transform LiDAR points into 
regular tessellations, and column three shows which surfaces were used a comparisons against 
the ITSMHydro toolset. 

Raster Grid 
Resolution/Cell Size 

Interpolation Method 
Used For 

Catchment 
Delineation 

30-feet Linear Yes 

30-feet Natural Neighbor Yes 

6-feet Linear No 

6-feet Natural Neighbor No 

3-feet Linear Yes 

3-feet Natural Neighbor Yes 

1-foot Linear No 

0.5-feet Linear No 

 

A root mean square error (RMSE) calculation was performed on each dataset to quantify 

elevation precision and, therefore, determine the highest quality watershed delineation.  The 

RMSE value determines the average difference between the interpolated pixel values of the surface 

model and the elevation values of surveyed locations (Wu 2008).  The surveyed sample points used 

for the RMSE calculations included 63-point locations with surface elevation values determined by 

professional survey. 
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Equation 3 Root Means Square Error equation to determine the average difference between the 
interpolated cell values and surveyed point elevation values where X1 represents the interpolated 
pixel value at the surveyed elevation location of X2, and n represents the total count of surveyed 
locations. 

. 

 

 

Storm water facility buffers were converted to a 3-foot raster Grid surface model and 

assigned an elevation value equal to the minimum value of the entire LiDAR dataset.  The pixel 

values of the storm water facility Grid were used to computationally replace the coincident pixels 

in the surface models, thereby establishing a connective flow path across the “obstruction” created 

by the raised roadbeds. 

The hydrography vector lines were manually edited to ensure that, for each individual line 

segment, the line direction of flow matched the direction of flow detailed in the Lummi Nation 

Storm Water Inventory.  The ESRI ArcHydro geoprocessor cannot calculate flow directions in a 

network of looping flow paths, for example braided streams or interconnected drainage ditches 

(Maidment 2002). For this reason, some hydrography lines had their uphill node disconnected 

from the network of flow paths to ensure that no flow line formed closed loops. 

The resulting „culvert burn‟ surface model and the non-looping hydrography data set were 

imported into an ArcHydro geodatabase.  The ArcHydro database allowed the stream network 

(hydrography) to be „burned‟ into the surface models, enforcing flow connectivity based on the 

configuration of the stream network (Maidment 2002).  The resulting hydrologically-corrected 
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surfaces were filled using the ArcGIS fill function to remove sinks and obstructions from the 

surface models that might impede the analysis.   

The filled surface models were used to generate flow direction surfaces detailing the flow 

direction from each cell to one of its eight adjacent neighbors (Figure 22).  The flow direction 

surfaces were then used to generate a flow accumulation surface where the numeric value of each 

pixel represents the total count of individual cells that flow into that cell (Figure 23).  The flow 

accumulation surfaces were used to generate watershed boundaries where all cells that share a pour 

point are assigned unique nominal numeric value (Figure 24). The basin output was transformed 

from its Grid format into a polygon data structure. 

 

Figure 22: A typical flow 
direction surface detail.  Each 
cell stores a numeric value 
detailing the flow direction in 
one of eight cardinal 
directions. 

 

Figure 23: A typical flow 
accumulation surface detail; 
each cell stores the count of 
cells that pour into that cell.  
Higher cell counts are 
displayed as a darker blue.  

 

Figure 24: Resulting 
catchment boundaries 
generated from a 3 ft. natural 
neighbor DTM. 
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4.9 Comparative Metrics for Catchment Polygons 

 Three different comparative metrics were used to quantify the differences in catchment 

delineations between the raster-based catchments and the ITSMHydro delineations: (1) percent 

difference, which highlights differences in area (Equation 4); (2) coefficient of area correlation, 

which expresses difference in footprint surface areas (Equation 5); and (3) the isoperimetric 

quotient, a measure of the length of the line for polygons with normalized areas (Equation 6). 

The coefficient of correspondence (CA) is a measure of areal association between two polygons as 

the ratio of the area of the intersection divided by the area of the union (Taylor 1977).  If two 

polygons are identical in shape and coincident, the CA will be one, if two polygons do not 

intersect, the CA will be zero. 

Equation 4: Formula to calculate percent difference between catchment areas. 

 

 

Equation 5:  The formula for calculating the coefficient of area correspondence as expressed as 
the ratio of the area of the intersections of two polygons over the area of the union of two 
polygons. 
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With the exception of areas and perimeters, there are a limited number of empirical metrics 

available to quantify the differences in the shapes of two asymmetrical polygons. The isoperimetric 

quotient (IQ) of a polygon provides one method to quantify a polygon‟s perimeter with respect to 

the polygon‟s area and is defined as the ratio of the polygon area to the area of a circle with same 

perimeter as the polygon where a perfect circle has an IQ of 1 (Equation 6;Osserman 1978).  The 

isoperimetric quotient was used as an inverse indicator of two catchments relative „sinuosity‟, or 

the amount of curves and bends formed by the line defining each polygon‟s perimeter.  In other 

words, if the ITSMHydro catchments, and the raster-based catchments have a similar shape, and 

the isoperimetric quotient values were different, the catchment with the lower isoperimetric 

quotient value had more perimeter for the area it encloses.  

Equation 6:  The formula for calculating the isoperimetric quotient as an indicator of the 
sinuosity of the catchment polygon. 
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Section 5: Results 

This section presents maps showing the resulting catchment delineations for four test areas 

and the results of the comparative metrics used to identify differences between the raster-based 

catchment delineation method and the ITSMHydro vector-based catchment delineation.  The test 

areas were selected represent areas which required the least amount of surface reconditioning and 

small enough in area to be processed by the ITSMHydro toolset.     

Subsection 5.1 details the results of RSME analysis for eight different raster surfaces 

generated from LiDAR bare-earth sample points.  Subsection 5.2: Maps showing four different 

catchment delineations from natural -neighbors-interpolated raster DTMs overlaid with four 

ITSMHydro interpolations.  Subsection 5.2.1: A number of comparative metrics are presented, 

including differences in catchment areas, differences in catchment perimeters, percent difference 

in areas, the coefficient of correspondence, and the isoperimetric quotient for each test area. 

5.1 Raster Catchment Delineation and RMSE Analysis Results 
 

  

 

Table 4 lists the results of the RMSE analysis for eight raster surfaces generated from LiDAR bare 

earth sample points using different pixel resolutions and interpolation methods and for a TIN 

derived from the LiDAR bare-earth sample points.   
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Table 4 also lists the RMSE value for a USGS 7.5-minute ten-meter DEM to highlight the accuracy 

gain of the LiDAR collection process over traditional stereophotogrammetric methods for surface 

model generation.   The RMSE value represents the average difference between the surface models 

elevation values at surveyed elevation points.   As shown in Table 4, the RMSE for all surface 

models generated using natural-neighbors interpolation were slightly lower than the RMSE values 

for surface models generated using linear interpolation, indicating that natural-neighbors 

interpolation produces higher quality surface models for these LiDAR data.  The highest RMSE 

value is associated with the USGS ten-meter surface model, indicating that this is the lowest 

quality surface model.   

The LiDAR data has a sample density of approximately 1126 points/1000 ft2 over the 

entire study area.  The higher RMSE values for coarser pixel surface models are expected since 

pixel values are subject to LiDAR point averaging during the interpolation process.  The LiDAR 

sample density most closely matches the surface area of the three-feet-pixel raster surface model 

that returned the lowest RMSE values, indicating that the three-feet-pixel surface model is less 

subject to error introduce by interpolation.  For pixels smaller than three feet, the pixel area is less 

than the LiDAR sample density, and therefore, each pixel value relies more heavily on the 

interpolation.  The 3-foot pixel (nearest neighbor interpolation) raster surface model had the 

lowest RMSE and was used to generate catchments to compare with the LiDAR TIN-generated 

catchments.   
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5.2 ITSMHydro Catchment and Raster Catchment Delineation Comparison and 

Analysis 

 Figure 25 through 29 show the resulting catchment delineations generated by ITSMHydro 

compared to a 3 ft. natural neighbor raster DTM catchment delineation. For test area 4, the 

Onion Creek watershed, the number of LiDAR sample points contained too many points to 

 

 

Table 4. Surface model Root Mean Square Error values based on pixel sizes and 
interpolation methods where the RMSE value represents the average distance between 
known surveyed elevations and the interpolated pixel values.  Each row in this table 
represents a raster surface model generated from bare earth LiDAR sample points.  Each 
raster has either a different pixel size or using a different interpolation method.  The 
RMSE for the USGS 10-meter is based on photogrammetric techniques resulting in a less 
precise surface model.  Notice the RMSE column: for all LiDAR-based surface models the 
RMSE decreases as the pixel size decreases, up to 1-foot.  Additionally, the RMSE for all 
natural neighbor interpolations are slightly lower than the linearly interpolated surfaces.  
Also shown (“TIN”) is the RMSE of the LiDAR sample points as reported by the LiDAR 
vendor, TerraPoint. 

Surface Model Resolution Interpolation Method RMSE (feet) 

USGS 10-meter Unknown 6.583 

30-feet Linear 1.478 

30-feet Natural Neighbor 1.473 

6-feet Linear 1.393 

6-feet Natural Neighbor 1.388 

3-feet Linear 1.393 

3-feet Natural Neighbor 1.387 

1-foot Linear 1.390 

0.5-feet Linear 1.469 

TIN Delaunay Triangulation 0.102 
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process by ITSMHydro (see discussion for more details on processing times and limitations).  For 

test area 4, to highlight issues related to less dense LiDAR point spacing, a number of LiDAR 

points were randomly selected using a random number generator to approximate the pixel count 

as a 30-meter pixel raster for the same area; those points were processed through ITSMHydro.  For 

each test area, a number of comparative metrics were calculated to highlight catchment differences 

resulting from differences in data type (Table 5).  For test areas 1, 3, and 4, the ITSMHydro 

catchments were smaller that the raster catchments, with PD ranging from -83.97% to -3.09%; 

only test area 2 returned a slightly larger relative percent difference in area (9.39%).  The CAC, a 

measure of overlap between the raster and ITSMHydro catchments (with value of 1.0 indicating 

complete overlap), ranged from 0.28 to 0.80.  Finally, the IQ, a measure of a catchment's area 

relative to its perimeter (an IQ of a perfect circle is one and a lower IQ value indicates greater 

boundary complexity), was lower for ITSMHydro catchments in 3 of 4 test areas, with the 4th 

being virtually identical (Test Area 1); IQ ranged from 0.13 to 0.26 among ITSMHydro 

catchments and from 0.21 to 0.37 among raster catchments. 

  



www.manaraa.com

 

47 

 
Figure 25: Test area 1 catchment comparison between the ITSMHydro delineation and a 3 ft. NN raster 
DTM delineation using all available LiDAR points. 
 

 

  

 

  



www.manaraa.com

 

48 

 

 

 

Figure 26: Test area 2 catchment comparison between the ITSMHydro delineation 
and a 3 ft NN raster DTM delineation using all available LiDAR points. 
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Figure 27: Test area 3 catchment comparison between the ITSMHydro delineation and a 
3 ft. NN raster DTM delineation using all available LiDAR. 
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Figure 28: Test area 4 catchment comparison between the ITSMHydro delineation and a 30 ft NN raster 
DTM delineation using a  LiDAR point appoximatly equal to the pixel density of a 30 ft pixel DTM. 
 



www.manaraa.com

 

51 

Table 5:  Comparative metrics for ITSMHydro and raster catchment delineations.   Four 
different three-feet natural neighbors interpolated raster catchment delineations are compared 
against four ITSMHydro delineations.  For each delineation, the area and perimeter measures 
of each catchment polygon are shown below with the area values used as inputs to calculate the 
relative percent difference in area.  For test areas 1, 3, and 4, the ITSMHydro catchments were 
smaller that the raster catchments, with test area 2 returning a slightly larger relative percent 
difference in area.  The CAC values show the ratio of the area of the intersection over the area 
of the union of both the raster and ITSMHydro catchments.  A CAC value of 1.0 would 
indicate that both catchment delineation methods returned exactly the same catchment 
polygons, a value of 0.5 would indicate that 50 percent of both polygons could be described as 
occupying the same space. Therefore, a lower CAC value indicates a greater difference in shared 
area and a higher CAC value indicates more similarity in shared area.  The IQ values for each 
catchment measure the amount of area relative to the length of its perimeter.  A perfect circle 
would return an IQ value of one and a lower IQ value, when compared to a polygon of similar 
shape, indicates that the polygon with the lower value has more perimeter for the area it 
occupies.  Only test area 1 returned nearly identical IQ values, with all other ITSMHydro 
catchments returning lower IQ values than the raster catchments, suggesting that the 
ITSMHydro catchments formed boundaries that are more complex. 

Test Area 
Delineation 

Method 
Area 

(sq. ft.) 
Perimeter 

(feet) 

Percent 
Difference in 

Area (PD) 

Coefficient of 
Areal 

Correspondence 
(CAC) 

Isoperimetric 
Quotient 

(IQ) 

Test Area 1 
ITSMHydro 239,381.9 3,716.4 

-83.97 0.28 
0.22 

3 ft. NN Raster 585,854.5 5,914.2 0.21 

Test Area 2 
ITSMHydro 104,312.5 2,249.7 

9.39 0.80 
0.26 

3 ft. NN Raster 94,954.7 1,789.4 0.37 

Test Area 3 
ITSMHydro 45,923.0 2,122.2 

-38.15 0.51 
0.13 

3 ft. NN Raster 67,570.5 2,010.9 0.21 

Test Area 4 
ITSMHydro 34,085,641.5 44,813.2 

-3.09 0.79 
0.21 

30 ft. NN 
Raster 35,156,334.1 36,898.7 0.32 
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Section 6: Discussion  

This sections details limitations and sources of error for the ITSMHydro toolset and the 

implications of those tool limitations on catchment delineations.  Subsection 6.1 discusses the 

implications of the RMSE analysis for raster surface creation for different  interpolation methods 

and pixel size.  Subsection 6.2 discusses the percent difference in area, coefficient of aerial 

correspondence, and the isoperimetric quotient values calculations.  Subsection 6.3 discusses the 

processing time differences between the raster-based catchment delineations and the ITSMHydro 

catchment delineations.   Subsection 6.4 explains the necessity of the bounding polygon prior to 

ITSMHydro code execution and the errors that can result from a poorly defined bonding polygon.  

Subsection 6.5 discusses how inconsistencies between irregular tessellations (TIN and Voronoi 

diagrams) can result in flow direction lines that cross or intersect catchment boundaries.  

Subsection 6.6 discusses the problems associated with model verification. 

6.1 RMSE Analysis of Interpolated Surfaces 

 Table 4 shows the RMSE values for a number of raster surface models generated from the 

LiDAR data and is consistent with the literature in that raster surface models are affected by a 

number of different factors including pixel size and interpolation methods (Garbrecht and Martz  

2000); (Garbrecht; et al. 2001); (Haile and Rientjes 2005); (Jones 2002) .   The USGS 10-meter 

surface model is the product of aerial photogrammetry and human interpretation, and the RMSE 

for this surface model showed the greatest difference between the pixel value and the surveyed 

elevation data; it is, therefore, the lowest quality surface model when compared against other raster 

surface models generated from LiDAR.   Raster surfaces interpolated from LiDAR showed a 
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substantial drop in RMSE relative to the 10-m surface model, indicating that the pixel values at all 

survey elevation locations were more similar, supporting Garbrecht and Martz (2000) in that the 

LiDAR data collection process results in higher quality surface data.  For those surfaces generated 

from LiDAR, as the pixel size decreased and approached the point density of the LiDAR data, the 

RMSE decreased.  This decrease in the RMSE as the pixel size decreased also supports the 

literature by demonstrating that more course pixel surfaces are subject to rounding errors 

(Garbrecht and Martz 2000).    Furthermore, differences in RMSE between similar pixel sizes, but 

different interpolation methods, indicates that the natural neighbors interpolation method 

produces a higher quality surface model for these data.  

 The three feet pixel surface models more closely matched the sample density of the LiDAR 

data.  Two surfaces were interpolated with pixel sizes smaller that the sample density of the LiDAR 

data: a 1-foot pixel surface and a 0.5-foot pixel surface.  For both the 1-foot and the 0.5-foot pixel 

surfaces, the RMSE increased higher than the three feet natural neighbors‟ surface, suggesting that 

the interpolation introduced error and degraded surface quality.  

   

6.2 Raster – Vector Delineation Comparisons for Shape and Area 

  ITSMHydro returned catchments that expressed variations in catchment areas, the extent 

of those areas as measured by the CAC, and differences in IQ when measured against raster 

delineation for the same area.  Because those vector-based differences in delineation area and 

delineation extent were neither consistently over nor under the areas and extent of those of the 

raster-based approach suggests that the process of interpolation has an unpredictable effect on the 
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quality of catchment delineation.  Three test areas returned ITSMHydro isoperimetric quotient 

values lower than the raster-based approach, suggesting that the raster-based approach has the 

effect of smoothing the catchment boundary.  This smoothing of the catchment boundary is 

expected in a raster surface model since the pixel value is a generalize elevation value over the pixel 

area as defined by the regular tessellation of the raster, and not defined by the discrete sample 

point values.  Test area one returned an ITSMHydro isoperimetric quotient slightly higher than 

the corresponding raster catchment,  but this may be due to the considerable difference in 

catchment areas or because LiDAR sample points below the mean higher high water line were 

removed from the analysis to reduce file sizes and speed processing times resulting in poorly 

defined boundaries along the shoreline.   

6.3 ITSMHydro Processing Times and File Size Limitations 

Processing times for ITSMHydro were significantly longer that the processing times of the 

raster-based approach.  The three-feet pixel raster surface model contained approximately 111 

million pixels, and it was possible to fill sinks, create flow direction lines, and generate catchment 

delineations for the entire surface area in approximately 36 hours of computer processing time.  

ITSMHydro took approximately 30 hours to process a 120,000 node TIN.  As the number of 

LiDAR points increases, the demands on the computer‟s processor and available memory 

increases, thereby increasing the processing times as detailed in Table 6.  Graphs showing the 

processing time for each tool. 
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Table 6:  Number and type of feature geometry iterations required by each ITSMHydro tool.  
The ITSMHydro tools rely on iterations of the point X, Y, Z data stored in arrays, where an 
iteration is defined as a computational „visit‟ to each member of the array, and a comparison of 
those values to line geometries stored in different arrays.  Increasing the number of LiDAR 
points in the data set increases the demand on the computer‟s processor and available memory, 
thereby increasing processing times.  For each LiDAR point, the create Flow Direction Lines 
tool requires a visit to the LiDAR point, and a visit to every edge line to evaluate whether that 
line intersects that point.  The Create Basin Boundary tool, and the Aggregate Sinks tool also 
utilize iterations of the data, but also use recursive functions resulting in two or more iterations 
occurring simultaneously, thus compounding the demands on the computer‟s processor and 
memory.  Furthermore, Aggregate Sinks needs to execute x number of times where x is the total 
number of sinks bound within sinks.  Column 2 in the table below show the number of 
iterations required for each tool and column 3 summarizes the iteration type.  Since Create 
Flow Direction Lines only require simple iterations of the data, this tools executes faster than 
both the Create Basin Boundary, which is executing multiple iterations simultaneously, or 
Aggregate Sinks, which is executing multiple iteration simultaneously and repeatedly until all 
sinks have been assigned to a catchment. 

ITSMHydro Tool Iteration Count Iteration Type 

Create Flow Direction 
Lines 

node count * edge count Iterator 

Create Basin Boundaries (pour point count * flow direction 
line count) + (branch count flow 
direction line count) 

Iterator and Recursion 

Aggregate Sinks ((sink count * edge count) + 
branch count * edge count))* 
maximum number of nested sinks 

Looped Iterator and 
Recursion. 

 

The ITSMHydro tools utilize iterators to evaluate connections between LiDAR points 

(nodes) and edge line or flow direction lines.  Point and line X, Y, and Z values are stored in 

matrices within the computer‟s memory and each point or line is „visited and evaluated‟ for 

connectivity using iteration of the features geometry stored in arrays.  Each LiDAR point (node) 

evaluated by the Create Flow Directions tool requires an iteration of every edge, to determine if 

that edge intersects that node.   
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Figure 29:  Processing time for the Create Flow Direction tool.  This graph shows the processing 
time required to generate flow direction lines from a TIN with x number of nodes on a 2.93 
Ghz Duo Core processor with 4 GB of RAM.  Because this tool relies on the iteration of two 
arrays, the processing time is largely linear with respect to node count.  The initial curve from 0 
– 4.5 minutes on the y-axis likely results from the time required to initialize the Python 
interpreter, load required code libraries, and establish the connection to the ArcGIS 
geoprocessor. 

 

 

Figure 30:  Processing time for Create Basin Boundaries.  This graph shows the processing time 
required to generate catchment boundaries for a TIN with x number of nodes on a 2.93 Ghz 
Duo Core processor with 4 GB of RAM.  The time required to process a 125,000 node TIN is 
about 5 hours, demonstrating the computational burden of this type of recursive iteration. 
Processing TINs greater than 125,000 nodes resulted in out-of memory errors; it is likely the 
line of this graph would more clearly define an exponential function due to the added processor 
and memory burdens of additional points. 
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Figure 31.  Processing times for Aggregate Sinks.  This tool requires the most processing time, 
requiring almost 20 hours to aggregate sink catchments generated from a 125,000 node TINs on 
a  2.93 Ghz Duo Core processor with 4 gb of RAM.   Processing times for this tool are 
substantially longer than the Create Catchments tool, requiring almost 20 hours, demonstrating 
the computational burden of this type of looped recursive iteration. Processing TINs greater 
than 125,000 nodes resulted in out-of-memory errors.  It is likely the line of this graph would 
more clearly define an exponential function due to the added processor and memory burdens of 
additional points.  Presumably, processing time is related to topographic relief where a LiDAR 
data set from a mountainous area would produce catchments with less sink areas, requiring 
fewer loops and thus speeding processing times. 

 

For the Create Basin Boundary tool, each pour point requires an iteration of each flow 

direction line to determine if that flow direction line connects to that pour point.  If a line is 

found to connect to the pour point, that line is evaluated and any flow direction line that connects 

to that line is evaluated until every line connected to the pour point is identified.  Since this type 

of tree-spanning algorithm requires recursion, functions that call themselves, and since these 

recursive iterations of the arrays occur simultaneously in RAM, the Create Basin Boundary tool 

demands a significant amount of processing resources.   
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 The Aggregate Sinks tool functions similarly to the Create Basin Boundary tool in that it 

also relies on recursive iterations to define those sinks that share hydrologic connectivity.  Create 

Basin Boundary is a further burden on the computer processor since this tools needs to execute 

multiple times (loop) until all sinks, or sinks within sinks, are assigned and aggregated into single 

catchments. Because of these computational demands, ITSMHydro is limited in the number of 

LiDAR nodes it is able to process.  A 150,000 node TIN surface failed to process on the Create 

Basin Boundaries tools and returned an error message that the computer was out of memory.  

Presumably, improvement in computer processing speeds and RAM will improve the performance 

of the ITSMHydro tools. 

6.4 Bounding Polygon Considerations 

The TIN generation process will create triangles on the periphery of the TIN that satisfy 

the definitions of a Delaunay triangulation but may form erroneous connections between two 

pour points for two discrete catchments.    ITSMHydro exports all edge lines for all tessellations, 

and edge lines on the periphery of the TIN can extend a significant distance between sample 

points.  Error! Reference source not found. shows the triangle edges and nodes outputs from a 

TIN using ArcGIS.  The gray area to the left of the red line shows examples of some triangles and 

edges that could potentially skew the resulting flow direction calculations.   If one of those lines 

erroneously formed a connecting edge line between two catchment pour points, ITSMHydro 

would evaluate that line as flow direction line, thereby merging two adjacent catchments and 

resulting in an over-estimation of catchment area.  For example, if the nodes labeled A and B in 

Figure 34 are pour points for two distinct catchments, and point A was slightly higher in elevation 
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then B, and the line A-B is not excluded by the bounding polygon, then ITSMHydro would 

recognize the line A-B as a valid flow direction line away from A resulting in a merging of the two 

catchments formed upslope of pour point A and B. 

 

 
 

 
 

 

 

Figure 32:  A hypothetical TIN where the edge lines on the periphery of the TIN connect 
node a substantial distance apart.  The bounding polygon (shown in red) must only capture 
those areas considered for flow direction lines. A line shown above as A – B, if not excluded 
by a properly defined bounding polygon could define a flow direction line that joined two 
pour points A and B resulting in the joining of two different catchments. 

A 

B 
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6.5 Flow Directions Lines and Catchment Delineations 
 

All flow directions lines generated by ITSMHydro are coincident with the triangulation 

lines.  The generation of the catchment 

boundary relies on the creation of a 

Voronoi diagram from those nodes that 

exist on the leaves of the outermost 

branches of the flow direction network.  

While the Delaunay triangulation 

and the Voronoi diagram share a 

geometric relationship in that the nodes 

bound by adjacent Voronoi polygons are 

connected by the TIN lines that connect 

those nodes, the Voronoi diagram and the 

TIN are different geometric objects.  This 

reliance on difference geometries will 

result in flow direction lines across 

catchment boundary lines, or that are coincident with catchment boundary line segments (Figure 

33). As such, either there is a slight error in estimations in catchment areas, or the flow direction 

lines do not represent the true flow path.  Whether the catchment areas are erroneous, or the flow 

lines are erroneous is based on which premise is accepted, in other words whether the Delaunay 

triangulation or the TIN is the primary geometry.  Accepting one geometry over the other, and 

 

Figure 33:  Showing an example of flow direction 
lines that cross or intersect the catchment 
boundary. 
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altering the algorithms to adjust the line work, or redeveloping the algorithms to utilize only one 

geometry type would solve the problem of inconsistent flow lines and catchments.  

6.6 Discussion on model validation 

ITSMHydro flow directions and catchment outputs were verified using an artificial dataset 

with a large range of topographical relief and well-defined catchment boundaries prior to execution 

using actual LiDAR data. ITSMHydro has not been validated beyond a comparison between the 

catchment delineations generated using industry standard raster processing tools.   

True catchment boundaries involve complex interactions among topography, soils, 

underlying geology, and vegetation cover.  Extensive amounts of fieldwork surveying the elevation, 

soils, geology and vegetation to determine a catchment line for model validation would likely 

involve subjectivity, sample error, and enough uncertainty to invalidate field-delineation of a 

catchment boundary for model validation.   

Finding some impervious surface, for example a paved parking lot covered by LiDAR data, 

that resulted in different raster vs. ITSMHydro catchment delineations, then measuring the 

discharge from that area during a rain event would result in a discharge volume total. That 

discharge volume may correlate with the discharge volume expected from one of the catchment 

delineations, but any number of catchment boundaries may return that discharge volume and 

would not provide conclusive proof that any calculated delineation was a sound delineation.   It 

may be possible to manufacture an artificial surface in a laboratory, find those areas where there 

are differences in the catchment boundaries and measure which direction water flows to better 
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determin the catchment in those areas.  Repeated iterations of this experiment may provide 

statistical evidence that one delineation method is superior. 
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Section 7 Conclusion and Future Work 
 

This work involves a number of algorithms generated in the Python programming language 

that interface with ESRI‟s ArcGIS to delineate catchment boundaries from LiDAR bare-earth 

sample points that are not constrained by the limitations imposed by the raster surface model.  

LiDAR sample points are transformed into a TIN surface model and the TIN geometry are 

extracted from the TIN as point, triangle polygon, and polygon line ESRI feature-dataset feature-

classes.  The node, triangle and line feature classes serve as inputs into three different tools which 

define flow directions from the lines based on the slopes between LiDAR nodes, define catchment 

boundaries based on Voronoi polygons around connected flow direction lines, and aggregate areas 

defined as sinks into final catchment delineations. 

Historically, GIS users have transformed surface elevation data into raster-based surface 

models for hydrologic modeling, including the delineation of flow direction lines, defining 

catchment boundaries, and managing sink areas within the dataset.  The raster-based surface 

model, and the algorithms used to generate flow directions and catchments, are influenced by a 

number of factors inherited by the pixel data structure.  Pixel values are subject to error by raster-

interpolation, filling algorithms result in areas of data loss, and flow directions are constrained by 

the eight-cardinal directions dictated by the raster cell structure.   These data structure constraints 

can each influence flow directions and catchment delineations resulting in error.   

The research presented in this thesis indicates that the LiDAR point data provided by 

Terrapoint Inc. for the area on and near the Lummi Indian Reservation are of a sufficient sample 

density and precision to define catchment boundaries using irregular tessellations to define the 
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spatial adjacency of those points. This research indicates that ESRI TIN surface models represent a 

higher quality dataset than traditionally-generated raster surface models, consistent with the 

research of Garbrecht and Martz (2000).  Delaunay-interpolated TIN surface models generated 

from the LiDAR data returned much lower RMSE, proving theTIN data were of a higher quality 

to any of the raster-interpolated surface models, supporting the literature that raster interpolation 

introduces more error into the raster dataset (Mark (1984); O'Callaghan and Mark (1984); Mark 

(1988);  Fairfield and Leymarie (1991); and Gehegan and Lee (2000).  Furthermore, this research 

shows that the processing algorithms presented are sufficient for hydrologic modeling when those 

data are transformed into irregular tessellations as demonstrated by the Voronoi flood modeling 

work of Dakowicz and Gold (2007). 

The algorithms presented produced catchment boundaries that varied in size and shape to 

a raster-based catchment delineation. The ITSMHydro delineations ranged from substantially 

smaller to slightly larger than raster delineations in the four different test areas, indicating the 

surface-model-data-structure can have a dramatic impact on catchment delineations.  These 

algorithms also produced catchment boundaries with generally higher boundary complexity, 

suggesting that a move away from the D8 flow direction algorithm (Maidment 2000) avoids any 

generalization of the flow direction surface, thereby producing a more accurate catchment 

boundary.  While the ITSMHydro algorithms executed as planned, a number of issues could be 

addressed to improve the overall utility of the ITSMHydro vector-based catchment delineation 

tools, including an automated method of producing a bounding polygon, model validation, and 

code optimization.  The automated generation of the bounding polygon would remove the human 

error associated with the construction of the bounding polygon and reduce the data preprocessing 
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time need to prepare the data for ITSMHydro execution, resulting in high-quality delineations.   

Validating the catchment delineations for both the vector-based and raster-based approach would 

definitively determine the utility of the ITSMHydro tools.  Additionally, there are number of code 

alterations that, if implemented, could speed ITSMHydro execution times to make ITSMHydo a 

more viable tool for hydrologic modeling. 

ITSMHydro, like the ArcHydro toolset, only considers topography when delineating 

catchment boundaries.  Neither ITSMHydro nor raster-based approaches produce the true 

catchment, since neither approach considers all the data necessary to capture the true catchment 

boundary.  However, it is relevant to evaluate which method most closely approximates the 

catchment area.  While there is no known method to definitively conclude that the vector-based 

approach presented herein is superior to a raster-based approach, RMSE values indicate that the 

TIN model generated from LiDAR points resulted in a remarkably improved surface model over 

the raster-based surface model in terms of elevation accuracy.  The ITSMHydro algorithms were 

able to produce catchment boundaries for several test areas that demonstrate differences in areas, 

location, and shape suggesting that the surface model has a significant influence on catchment 

boundary delineation.   

This work contributes to the field of geographic information sciences in a number of 

different ways.  Several original subroutines were developed to perform a number of tasks that 

were previously unavailable to GIS professionals, including subroutines to collapse the inner rings 

of donut polygons, reassign line from-to directions based on node z values, write line geometries to 

feature class attribute tables, identify lines sloping away from points, dissolving single-part  line 
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features that share node connectivity, and recursive spatial selections.  Given the lower relative 

accuracy of raster-based surface models evident in the study area, the observed differences in size, 

shape, and location between raster- and vector-based catchments suggest that use of the raster-

based approach may compromise accuracy in area, shape, and location of the resulting catchments.  

A vector-based approach that maintains the integrity of the sample data is preferred, especially in 

areas of low topographic relief with high sample point density .  Since the TIN surface model more 

closely matched surveyed elevation values, ITSMHydro catchments are better suited for producing 

a more legally defensible catchment boundary and therefore, may affect jurisdictional 

responsibilities with respect to water rights and other water resource-related issues.  The file size 

constraints limit application of the approach developed herein, however, at least until 

technological advances and/or code revisions improve computer processing speed and file size 

capacity.  Most importantly, this research advances the growing field of geographic information 

science by exposing the assumptions of historically accepted practices.  



www.manaraa.com

 

67 

  

 

Works Cited 
 

Campbell, J. (2002). Introduction to Remote Sensing. New York, The Guilford Press. 
  
de Berg, M., Cheong, O, van Kreveld, M, Oveermars, M (2008). Computational Geometry: 
Algorithms and Applications. Santa Clara, CA. 
  
Duke, G. D., Kienzel, S. W., Johnson, D. L., Byrne, J.M. (2003). "Improving overland flow routing 
by incorporating ancillary road data into Digital Elevation Models." Journal of Spatial Hydrology 
3(2): 26. 
  
ESRI. (2010). "About TIN Surfaces." from 
http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=About_TIN_surfaces. 
  
ESRI. (2010). "File Geodatabase Resolution." from 
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/feature_class_basics.htm. 
  
ESRI. (2010). "Geodatabases." from 
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/types_of_geodatabases.ht
m. 
  
Fairfield, J. and P. Leymarie (1991). "Drainage networks from grid digital elevation models." Water 
Resour. Res. 27(5): 709-717. 
  
 
Garbrecht, J. and L. W. Martz (2000). Digital Elevation Model Issues In Water Resources 
Modeling. 
  
Garbrecht, J., F. L. Ogden, et al. (2001). "GIS and Distributed Watershed Models. I: Data 
Coverages and Sources." Journal of Hydrologic Engineering 6(6): 506-514. 
  
Gold, C. M., Remmele, P. R., Roos, T. (1989). Spatial adjacency - a general approach. Auto-Carto 
9, Baltimore, Md, USA. 
  
Gold, C. M., Remmele, P. R., Roos, T. (1997). Voronoi Methods in GIS. Algorithmic 
Foundations of Geographic Information Systems. Berlin/Heidelberg, Springer. 1340/1997: 21 - 
35. 

http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=About_TIN_surfaces
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/feature_class_basics.htm
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/types_of_geodatabases.htm
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/types_of_geodatabases.htm


www.manaraa.com

 

68 

  
Haile, A. T., Rientjes, T. H. M. (2005). Effects of LIDAR DEM Resolution in Flood Modeling: 
A Model Sensitivity Study for the City of Tegucigalpa, Honduras. ISPRS WG III. Enschede, The 

Netherlands. 
  
Jones, R. (2002). "Algorithms for using a DEM for mapping catchment areas of stream sediment 
samples." Computers & Geosciences 28(9): 1051-1060. 
  
Maidment, D. (2002). ArcHydro, GIS for Water Resources. Redlands, Ca, ESRI Press. 
  
Maidment, D. R. (2002). Arc Hydro, GIS for Water Resources. Redlands, ESRI Press. 
  
Maidment, D. R., Djokic, D. (2000). Hydrologic and Hydraulic Modeling Support with 
Geographic Information Systems. Redlands, ESRI Press. 
  
Mark, D. M. (1984). "Automatic detection of drainage networks from digital elevation models." 
Cartographica 21(2/3): 168-178. 
  
Mark, D. M. (1988). Modeling Geomorphologic Systems. Chichester, John Wiley & Sons. 
  
O'Callaghan, J. F. and D. M. Mark (1984). "The extraction of drainage networks from digital 
elevation data." Computer Vision, Graphics, and Image Processing 28(3): 323-344. 
  
 
Osserman, R. (1978). "The Isoperimetric Inequality." Bulliten of the Mathematical Society 84: 
1182 - 1238. 
  
Peucker, T. K., R. J. Fowler, et al. (2002). Digital Representation of Three-Dimensional Surfaces by 
Triangulated Irregular Networks (TIN). REVISED. 
  
 
Peucker, T. K., Fowler, Robert J., Little, James J., Mark, David M. (1977). The Triangulated 
Irregular Network. D. o. Geography. Burnaby, Canada, Simon Fraser University. 
  
Sack, R., Urruita, J (2000). Handbook of Computational Geometry. Amsterdam, Elsevier. 
  
Taylor, p. (1977). Quantitative Methods in Geography. Tyne, United Kingdom, Waveland Press, 
Inc. 
  
Tobler, W. (1970). "A computer move simulating urban growth in the Detroit region." Economic 
Geography 46(2): 234 - 240. 
  



www.manaraa.com

 

69 

Tucker, G. E., S. T. Lancaster, et al. (2001). "An object-oriented framework for distributed 
hydrologic and geomorphic modeling using triangulated irregular networks." Computers & 
Geosciences 27(8): 959-973. 
  
Wehr, A. L. U. (1999). "Airborne laser scanning-an introduction and overview." ISPRS Journal of 
Photogammetry and Remote Sensing 54: 68-82. 
  
Wu, S., Li, J., Huang, G. (2008). "Characterization and Evaluation of Elevation Data Uncertainty 
in Water Resource Modeling." Water Resources Management: 959-972. 
  
 
  
 
  

  



www.manaraa.com

 

70 

Appendix A- 0_LoadDataFromTINToGeoDataBase.py 
 
try: 
    print "Load data from TIN To ESRI File Geodatabase for ITSMHydro" 
    import sys, arcgisscripting 
    gp = arcgisscripting.create() 
    gp.CheckOutExtension("3D") 
    gp.workspace = TheWorkingDirectory 
    gp.RefreshCatalog(TheWorkingDirectory) 
 
    ######    User Defined Variables    ########## 
    TheWorkingDirectory = r"E:\Thesis\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro" 
    TIN = r"E:\Thesis\ITSMHydro2011CorrectNames\TestData\testtin"    
    gp.overwriteoutput = 1 
    gp.ZResolution = "0.01" 
    gp.XYResolution = ".01" 
    ################################################# 
 
    print "Export TIN edges." 
    Edges = "Edges" 
    gp.TinEdge_3d(TIN, Edges, "DATA") 
    print "Export TIN nodes." 
    Nodes = "Nodes" 
    gp.TinNode_3d(TIN, Nodes, "", "Tag_Value") 
    print "Export TIN triangles." 
    Triangles = "Triangles" 
    gp.TinTriangle_3d(TIN, Triangles, "PERCENT", "1", "", "") 
    print "\nFinished loading TIN Data." 
except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
except Exception, ErrorDesc: 
    print ErrorDesc.message 
    print "Error with python" 
    sys.exit()   
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Appendix B- 1_FlowDirectionsFromTIN.py 
 
#This script will take a scattered distribution of point and identify those 
#lines that represent surface water flow paths based on a Delaunay Triangulation 
#generated from those points.  
#For each record in the feature class called node, those lines that intersect that node are identified. 
#The line distance is calculated using the distance formula and a slope value 
#is generated.  For each node, the intersecting lines are sorted based on slope, the line with the steepest 
#slope is writen to a new feature class.  If more that one line have the same steepest slope, that line 
#in the last sort position is returned. 
 
#User Defined Variables    ##################################################### 
#The path to the feature dataset in a geodatabase 
TheWorkingDirectory = r"E:\Thesis\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro" 
#A path and name.txt of a text file, user must have write permission to this directory. 
textfile = r"C:\Temp\ITSMHydroflowdirectionfromTIN.txt" 
#1 to overwrite all geoprocessing outputs, 0 to not overwrite. 
OverWriteOutput = 1 
#The resolution of the origial point data 
XYResolution = r".01" 
# ############################################################################# 
 
print "Create Flow Direction lines from a TIN" 
print"Created by Gerry Gabrisch. \nAugust 2009  gerry@gabrisch.us\n" 
import sys, string, os, arcgisscripting, math, operator, exceptions, shutil, time 
def GetTime(t): 
    #Convert time to a readable format. 
    theyear = t[0] 
    themonth = t[1] 
    theday = t[2] 
    thehour = t[3] 
    theminutes = t[4] 
    theseconds = t[5] 
    thedate = str(themonth) + r"/" + str(theday) + r"/" + str(theyear) 
    starttime = str(thehour) + ":" + str(theminutes) + ":"+str(theseconds) 
    return thedate +", "+ starttime 
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def EndTime(starttime): 
    #Calculate the processing time and 
    #print the processing time to the screen. 
    endtime = time.time() 
    t = time.localtime(endtime) 
    print "Finished at " + GetTime(t) 
    totalseconds = endtime - starttime 
    hours1 = totalseconds/3600 
    hours = int(hours1) 
    minutes2 = hours1 - hours 
    minutes1 = minutes2*60 
    minutes = int(minutes1) 
    seconds = int((minutes1-minutes)*60) 
    print "Time to Process; "+str(hours) +": "+str(minutes) +": "+str(seconds) 
    print GetTime(t) 
try: 
    starttime = time.time() 
    t = time.localtime(starttime) 
    print "Start Time = " + GetTime(t) 
    #Create Geoprocessing object, set workspace, set extensions, and purge schema locks. 
    gp = arcgisscripting.create() 
    gp.workspace = TheWorkingDirectory 
    gp.RefreshCatalog(TheWorkingDirectory)  
    gp.CheckOutExtension("3D") 
    gp.OverWriteOutput = OverWriteOutput 
    gp.XYResolution = XYResolution 
    #Required Variables for this script. 
    Edges = "Edges" 
    BoundingPolygon = "BoundingPolygon" 
    BoundingPolygonLine = "BoundingPolygonLine" 
    FlowDirectionLines = "FlowDirections" 
    Edges_Layer = "Edges_Layer" 
    BoundingPolygonLine_Layer = "BoundingPolygonLine_Layer" 
    #The geoprocessor will not overwrite a text file. If it exists, delete the existing copy. 
    if os.path.exists(textfile): 
        os.remove(textfile) 
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    print "Purge lines that intersect the bounding polygon of the TIN." 
    #Convert the bounding polygon to a line feature class to facilitate the 
    #selections that remove edge lines on the periphery of the TIN.  Select any 
    #lines that intersect the bounding polygon and delete them. 
    gp.FeatureToLine_management(BoundingPolygon, BoundingPolygonLine, "", "ATTRIBUTES") 
    gp.MakeFeatureLayer_management(Edges, Edges_Layer, "", "", "Index Index VISIBLE NONE;EdgeType EdgeType VISIBLE NONE;Shape_Length Shape_Length 
VISIBLE NONE") 
    gp.MakeFeatureLayer_management(BoundingPolygonLine, BoundingPolygonLine_Layer, "", "", "") 
    gp.SelectLayerByLocation_management(Edges_Layer, "INTERSECT", BoundingPolygonLine_Layer, "", "NEW_SELECTION") 
    gp.DeleteFeatures_management(Edges_Layer) 
    #Create a text file that will store the feature geometry of the 
    #flow direction lines. 
    print "Create text file." 
    f = open(textfile,'a') 
    thestring = "polyline\n" 
    f.writelines(thestring) 
    f.close() 
    #Start a search cursor to get the feature geometry of the 
    #edge lines that intersect the nodes. 
    print "Start Search Cursor." 
    TheObjectID = 1 
    desc = gp.Describe(Edges_Layer) 
    shapefieldname = desc.ShapeFieldName 
    rows2 = gp.SearchCursor(Edges_Layer) 
    row2 = rows2.Next() 
    superlist = [] 
    print "Reading feature geometry." 
    while row2: 
        feat = row2.GetValue(shapefieldname) 
        thefeature = row2.getvalue(desc.OIDFieldName) 
        partnum = 0 
        partcount = feat.PartCount 
        #Templist store the line geometry for each node. 
        templist = [] 
        while partnum < partcount:  
            part = feat.GetPart(partnum) 
            pnt = part.Next() 
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            pntcount = 0 
            #Enter while loop for each edge, get the first x, y, z returned for each feature. 
            while pnt: 
                z = round(pnt.z,2) 
                x = round(pnt.x,2) 
                y = round(pnt.y,2) 
                #If the list is empty, write xyz to the templist. 
                if templist == []: 
                    templist=[x, y, z] 
                #If the list is not empty, then this is the second node in the 
                #line.  Evaluate the z values of the two nodes 
                #and write them to a list with the higher elevation first. 
                #Also, create a unique ID consisting of a string of the from 
                #coordinate values of each lines start and end nodes. 
                else: 
                    #For cases where the first node returned is the lower end of the line do this. 
                    if z < templist[2]:  
                        x1 = str(templist[0]) 
                        y1 = str(templist[1]) 
                        IDKey = x1 + y1 
                        tempsuperlist = [IDKey, templist[0], templist[1], templist[2], x, y, z] 
                        #Calculate the line length using the distance formula. 
                        therun = math.pow(((math.pow((tempsuperlist[1]-tempsuperlist[4]),2)) + (math.pow((tempsuperlist[2] - tempsuperlist[5]),2))),.5) 
                        #Calculate the rise by subtracting the z values of the two line end nodes. 
                        therise = tempsuperlist[3]- tempsuperlist[6] 
                        #Convert the rise to the percent slope. 
                        percentslope = abs(therise/therun *100) 
                        tempsuperlist.append(percentslope) 
                        #Add the results of this line to the 'super list of all line IDs, coordinates, and slopes. 
                        superlist.append(tempsuperlist) 
                        #Reset templist to an empty list. 
                        templist = [] 
                    #For cases where the first node returned is the higher end of the line do this. 
                    else:   
                        x1 = str(x) 
                        y1 = str(y) 
                        IDKey = x1+y1 
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                        tempsuperlist = [IDKey, x, y, z, templist[0], templist[1], templist[2]] 
                        #Calculate the line length using the distance formula.''' 
                        therun = math.pow(((math.pow((tempsuperlist[1]-tempsuperlist[4]),2)) + (math.pow((tempsuperlist[2] - tempsuperlist[5]),2))),.5) 
                        #Calculate the rise by subtracting the z values of the two line end nodes. 
                        therise = tempsuperlist[3]- tempsuperlist[6] 
                        #Convert the rise to the percent slope. 
                        percentslope = abs(therise/therun *100) 
                        tempsuperlist.append(percentslope) 
                        #Add the results of this line to the 'super list of all line IDs, coordinates, and slopes. 
                        superlist.append(tempsuperlist) 
                        #Reset templist to an empty list. 
                        templist = [] 
                pnt = part.Next() 
                pntcount += 1 
                if not pnt: 
                    pnt = part.Next() 
            partnum += 1 
        #Add one to the TheObjectID. 
        TheObjectID += 1 
        row2 = rows2.Next()     
    print "Total Lines Processed = "+ str(TheObjectID) 
    #Sort (ascending)the list items based on the values stored in [0](the from id) 
    superlist = sorted(superlist, key=operator.itemgetter(0))  
    linesfromanode =[] 
    TheObjectID = 0 
    print "Finding steepest path out from each TIN node." 
    #Superlist[] now contains all lines grouped by the 'from' coordinates. Get all records with the same ObjectID, 
    #write them to a new list, and sort them by slope so that the greatest slope as the last record in the list. 
    for item in superlist: 
        #If the list is empty, grab the current item and add it to a new list. 
        if linesfromanode == []:  
            linesfromanode.append(item) 
        #If the list is not empty, and the index of this item is equal to the index of the item currently 
        #in the list, add it to the list. 
        else: 
            if linesfromanode[-1][0] == item[0]: 
                linesfromanode.append(item) 
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            #There are no more lines with the same index, so process the data and identify the 
            #line with the steepest path from the node.  
            else: 
                #Sort the values by the slope, the last item in the list. 
                linesfromanode = sorted(linesfromanode, key=operator.itemgetter(7)) 
                #Now the last item in the list hase the greatest slope and is therefore, the line out. 
                lineout = linesfromanode.pop()  
                #Write the coordinates and elevations (from-to) to a string formated for ArcGIS. 
                thestring = str(TheObjectID) + " 0\n" + "0 "+ str(lineout[1])+" "+str(lineout[2]) +" " + str(lineout[3]) + "\n" + "1 " + str(lineout[4]) + " " + str(lineout[5]) + " " + 
str(lineout[6])+"\n" 
                f = open(textfile,'a') 
                f.writelines(thestring) 
                f.close() 
                TheObjectID += 1 
                #All finished with this node, now clear out the list of lines from this node. 
                linesfromanode = []   
                #The item returned is not part of the same node, use it to evaluate the lines out of this node. 
                linesfromanode.append(item) 
    #All lines have been processed and writen to a text file. Finish formatting the text file.      
    f = open(textfile,'a') 
    thestring = "END" 
    f.writelines(thestring) 
    f.close() 
    #Read the text file of geometry and construct a new feature class 
    #that represents the flow direction lines from each node. 
    print "Building geometry." 
    inSep = "." 
   #Convert the text file to a shapefile. 
    gp.CreateFeaturesFromTextFile_samples(textfile, inSep, FlowDirectionLines, "#") 
    gp.RefreshCatalog(TheWorkingDirectory) 
    #Delete variables. 
    try: 
        #Delete the geoprocessor. 
        del gp 
    except:  
        pass 
    EndTime(starttime) 
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    x = raw_input("Finished, press enter to quit") 
    sys.exit(0) 
except arcgisscripting.ExecuteError: 
    print "ArcGIS error in FlowDirectionsFromTIN.py." 
    print gp.GetMessages(2) 
    sys.exit() 
except Exception, ErrorDesc: 
    print ErrorDesc.message 
    print "Python error in FlowDirectionsFromTIN.py." 
    sys.exit() 
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Appendix C- 2_CreateCatchmentPolygons.py 
print "Assign sink polygons to catchments " 
#################################################################### 
#UserDefinedInputData 
#The path to the geodatabase feature dataset 
TheWorkingDirectory = r"C:\Temp\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro" 
#A textfile path and name (must be a read\write space.) 
textfile =  r"C:\Temp\GBGTempTextFileForReassignLineDirections.txt" 
#Set to 1 to delete the temp feature classes. 
overwriteoutput = 1 
deletetempdata = 0 
#################################################################### 
import sys, string, os, arcgisscripting, math, operator, exceptions, shutil, time 
 
def GetTime(t): 
    #Convert time to a readable format and to time code execution. 
    theyear = t[0] 
    themonth = t[1] 
    theday = t[2] 
    thehour = t[3] 
    theminutes = t[4] 
    theseconds = t[5] 
    thedate = str(themonth) + r"/" + str(theday) + r"/" + str(theyear) 
    starttime = str(thehour) + ":" + str(theminutes) + ":"+str(theseconds) 
    return thedate +", "+ starttime 
 
def EndProgram(starttime, deletetempdata): 
    #Quit the program, delete temporary data file if requested, and print code execution time. 
    if deletetempdata == 1: 
        print "Delete temp data" 
        EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries" 
        FlowLinesAcrossCatchmentsWithFlowDirections ="FlowLinesAcrossCatchmentsWithFlowDirections" 
        SpatialJoinOutput = "SpatialJoinOutput" 
        FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1" 
        FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        gp.Delete_management(EdgesAccrossCatchmentBoundaries) 
        gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirections) 
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        gp.Delete_management(SpatialJoinOutput) 
        gp.Delete_management(FeatureVerticiesToPoints1) 
        gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirectionsedited) 
    endtime = time.time() 
    t = time.localtime(endtime) 
    print "Finished at " + GetTime(t) 
    totalseconds = endtime - starttime 
    hours1 = totalseconds/3600 
    hours = int(hours1) 
    minutes2 = hours1 - hours 
    minutes1 = minutes2*60 
    minutes = int(minutes1) 
    seconds = int((minutes1-minutes)*60) 
    print "\n\nTime to Process; "+str(hours) +": "+str(minutes) +": "+str(seconds) 
    x = raw_input("Finished! Press enter to quit") 
    sys.exit(0) 
   
def FillDonut(inputfeatureclass): 
    #Catchment delineations can have other polygons bound within them. Delete any 
    #verticies of a polygon the represent the interior portion of the feature 
    #by identifing interior nodes and delete them using a feature geometry array. 
    #The bounding polygon is no longer an annulus but a different record exists 
    #that represents the area covered by the inner hole.  Find those remaining 
    #features and delete them. The resulting feature class represents an irregular 
    #tesselation of polygons with no polygons bound within any other polygon. 
 
    try: 
        print "\nCall FillDonut()" 
        desc = gp.Describe(inputfeatureclass) 
        shapefield = desc.ShapeFieldName 
        rows = gp.UpdateCursor(inputfeatureclass) 
        row = rows.next() 
        arrayObj = gp.CreateObject("Array") 
        arrayOuter = gp.CreateObject("Array") 
        ListOfIDs = [] 
        while row: 
            feat = row.getValue(shapefield) 
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            qInterior = False 
            for partNum in range(feat.partCount) : 
                part = feat.getPart(partNum)  
                qInterior = False 
                for ptNum in range(part.count): 
                    pt = part.next()  
                    if pt != None: 
                        arrayOuter.add(pt) 
                    else : 
                        qInterior = True 
                        break 
                arrayObj.add(arrayOuter) 
                arrayOuter.RemoveAll() 
            if qInterior : 
                row.setValue(shapefield,arrayObj) 
                rows.updateRow(row) 
                ListOfIDs.append(row.OBJECTID) 
            arrayObj.RemoveAll() 
            row = rows.next() 
        del rows,row 
        Catchments_Layer = "Catchments_Layer" 
        gp.MakeFeatureLayer_management(inputfeatureclass, Catchments_Layer, "", "", "") 
        if ListOfIDs != []: 
            print "Filling features bound within other catchments." 
            for item in ListOfIDs: 
                gp.SelectLayerByAttribute_management(Catchments_Layer, "NEW_SELECTION", "\"OBJECTID\" = " + str(item)) 
                gp.SelectLayerByLocation_management(Catchments_Layer, "COMPLETELY_WITHIN", Catchments_Layer, "", "NEW_SELECTION") 
                gp.DeleteFeatures_management(Catchments_Layer) 
        else: 
            print "No features bound within other features." 
        print "Finished with FillDonut()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error in FillDonut()." 
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        sys.exit() 
 
def SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata): 
    #Identifies those edge lines that cross catchment boundaries. Any polygon touching the 
    #convex hull are excluded meaning all edge polygons can recieve flow from 
    #non-edge polygons, but that cannot flow back into interior polygons.  All 
    #edge polygons must flow off the surface model.  
    #This function also calculates the number of polygons that touch the convex hull 
    #and the count of those that don't touch the convex hull.  If those counts are the same, then all 
    #aggregations are complete and the function calls EndProgram() 
    try: 
        print "\nCall SelectEdgeLinesThatCrossCatchmentBoundaries()." 
        Output_Layer = "Output_Layer" 
        Catchments_Output_Layer ="Catchments_Output_Layer" 
        EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries" 
        BoundingPolygon_Output_Layer= "Convex_Hull_Output_Layer" 
        #Add an attribute to indentify if this catchment touches the edge of the convex hull 
        gp.AddField_management(Catchments, "IS_POUR_PT", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
        print "Make Feature Layer." 
        #Make Feature Layers... 
        gp.MakeFeatureLayer_management(Edges, Output_Layer, "", "", "") 
        gp.MakeFeatureLayer_management(Catchments, Catchments_Output_Layer, "", "", "") 
        gp.MakeFeatureLayer_management(BoundingPolygonLine, BoundingPolygon_Output_Layer, "", "", "") 
        #Select only those sinks that do not touch the edge of the surface model, This tool assumes that all 
        #polygons touching the convex hull can receive flow but do not flow into the surface model. 
        CatchmentsCount = gp.GetCount_management(Catchments) 
        print "CatchmentsCount = ", CatchmentsCount 
        gp.SelectLayerByLocation_management(Catchments_Output_Layer, "BOUNDARY_TOUCHES", BoundingPolygon_Output_Layer, "", 
"NEW_SELECTION") 
        CatchmentsTouchingBoundingPolygon = gp.GetCount_management(Catchments_Output_Layer) 
        print "CatchmentsTouchingBoundingPolygon = ", CatchmentsTouchingBoundingPolygon 
        if CatchmentsCount == CatchmentsTouchingBoundingPolygon: 
            print "\n\nAll Catchments intersect the convex hull." 
            EndProgram(starttime, deletetempdata) 
        gp.CalculateField_management(Catchments_Output_Layer, "IS_POUR_PT", "1", "VB") 
        #Get a list of all the catchments touching the convex hull. 
        ListOfPourPointCatchments = [] 
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        rows2 = gp.SearchCursor(Catchments_Output_Layer) 
        row2 = rows2.Next() 
        while row2: 
            if row2.IS_POUR_PT == 1: 
                ListOfPourPointCatchments.append(row2.Catchments) 
            row2 = rows2.next() 
        del rows2, row2 
        #Select only those catchment polygons that are interior polygons. 
        gp.SelectLayerByLocation_management(Catchments_Output_Layer, "", "", "", "SWITCH_SELECTION") 
        print "Select all edges that cross the boundary of the selected polygons." 
        gp.SelectLayerByLocation_management(Output_Layer, "CROSSED_BY_THE_OUTLINE_OF", Catchments_Output_Layer, "", "NEW_SELECTION") 
        print "Create feature class EdgesAccrossCatchmentBoundaries." 
        gp.CopyFeatures_management(Output_Layer, EdgesAccrossCatchmentBoundaries, "", "0", "0", "0") 
        del Output_Layer, Catchments_Output_Layer, EdgesAccrossCatchmentBoundaries, BoundingPolygon_Output_Layer 
        print "Finished SelectEdgeLinesThatCrossCatchmentBoundaries()" 
        return ListOfPourPointCatchments 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with SelectEdgeLinesThatCrossCatchmentBoundaries()" 
        sys.exit() 
         
def AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile): 
    #ESRI feature class geometry holds a start node and an end node.  These nodes are independent of 
    #poly z objects.  Because lines can have a start node with a lower elevation than a end node, 
    #reassign the line direction so that the highest z value is that start node. 
    #Feature geometry is read using cursors identifying the start and end node z values and written to a list. 
    #The line-node coordinates are flipped if necessary so that the line start has the highest z value. 
    #The resulting geometry is written to a text file and that text file is used to create a new feature class so 
    #that line direction is the same as the flow direction. 
    try: 
        print "\nCall AlterLineGeometryFlowsFrom2FlowsTo()." 
        FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections" 
        if os.path.exists(textfile): 
            os.remove(textfile) 
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        print "Create Text File." 
        f = open(textfile,'a') 
        thestring = "polyline\n" 
        f.writelines(thestring) 
        f.close() 
        print "Read Feature Geometry. Create Correct Flow Directions." 
        desc = gp.Describe(EdgesAccrossCatchmentBoundaries) 
        shapefieldname = desc.ShapeFieldName 
        rows = gp.SearchCursor(EdgesAccrossCatchmentBoundaries) 
        row = rows.Next() 
        while row: 
            feat = row.GetValue(shapefieldname) 
            FeatureID = str(row.getvalue(desc.OIDFieldName)) 
            partnum = 0 
            partcount = feat.PartCount 
            while partnum < partcount: 
                ThePart = str(partnum) 
                part = feat.GetPart(partnum) 
                pnt = part.Next() 
                pntcount = 0 
                Thecurrentpart = [] 
                while pnt: 
                    Thecurrentpart.append(pnt.x) 
                    Thecurrentpart.append(pnt.y) 
                    Thecurrentpart.append(pnt.z) 
                    pnt = part.Next() 
                    pntcount += 1 
                    if not pnt:  
                        pnt = part.Next() 
                        if pnt: 
                            print "Interior Ring:" 
                partnum += 1 
            #If the from z is lower than the to z, flip them, write the results to a text file... 
            if Thecurrentpart[2]<Thecurrentpart[5]:     
                thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[3])+ " "+ str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+ "\n" +"1 "+ 
str(Thecurrentpart[0])+ " "+ str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+"\n" 
            else:     
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                thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[0])+ " "+ str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+ "\n" +"1 "+ 
str(Thecurrentpart[3])+ " "+ str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+"\n" 
            f = open(textfile,'a') 
            f.writelines(thestring) 
            f.close()     
            row = rows.Next() 
        f = open(textfile,'a') 
        thestring = "END" 
        f.writelines(thestring) 
        f.close() 
        del row, rows 
        #Create a new feature class that has the correct flow directions. 
        print "Create Features from Text File." 
        #Process: Create Features From Text File... 
        gp.CreateFeaturesFromTextFile_samples(textfile, ".", FlowLinesAcrossCatchmentsWithFlowDirections, "") 
        print "Finished AlterLineGeometryFlowsFrom2FlowsTo()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with AlterLineGeometryFlowsFrom2FlowsTo()." 
        sys.exit() 
         
def AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments): 
    # This function appends to the attribute table of FlowLinesAcrossCatchmentsWithFlowDirections the 
    #catchment ID for the catchment the line originates in and the catchment it ends in by exporting line nodes 
    #to a new feature class, using a spatial join to append the catchment ID to the nodes.  The resuting nodes 
    #catchment values are read with a cursor and stored in a Python list.  Finally, this list is iterated and the 
    #catchment IDs are written to the attribute table of the lines.  The FlowLinesAcrossCatchmentsWithFlowDirections 
    #feature class will store the catchment IDs in  attributes called From_ID, and To_ID. 
    #Any line that originates in catchment x and flow back into it that same catchment is removed from the feature class 
    #because this will cause closed loops which are not- reconsilable with the spanning tree funtion. 
    try: 
        print "\nCall AddCatchmentIDsToFlowLines()" 
        SpatialJoinOutput = "SpatialJoinOutput" 
        FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1" 
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        print "Adding Fields" 
        gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "From_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "To_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        gp.AddField_management(Catchments, "Catchment1", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        #Get the catchment IDs for the lines that cross the catchment boundaries. 
        print "Export Vertices to Points." 
        gp.FeatureVerticesToPoints_management(FlowLinesAcrossCatchmentsWithFlowDirections, FeatureVerticiesToPoints1, "BOTH_ENDS") 
        print "Join Vertices to Catchment IDs" 
        fieldmappings = gp.CreateObject("FieldMappings") 
        fieldmappings.AddTable(Catchments) 
        fieldmap = fieldmappings.GetFieldMap(fieldmappings.FindFieldMapIndex("Catchments")) 
        field = fieldmap.OutputField 
        field.Name = "Catchments" 
        fieldmap.OutputField = field 
        fieldmappings.ReplaceFieldMap(fieldmappings.FindFieldMapIndex("Catchments"), fieldmap) 
        gp.SpatialJoin_analysis(FeatureVerticiesToPoints1, Catchments, SpatialJoinOutput, "JOIN_ONE_TO_ONE", "KEEP_ALL",fieldmappings ) 
        #Enummerate the points and get the values of the catchments 
        #Write the catchments to a list.... 
        #Because the FeatureVerticiesToPoints1 points are in order (from to) and 
        #by original line FID, you can read the points and append to the lines. 
        print "Searching Feature Attributes." 
        rows2 = gp.SearchCursor(SpatialJoinOutput) 
        row2 = rows2.Next() 
        CatchmentNumbers = [] 
        while row2: 
            catchment = row2.Catchments 
            CatchmentNumbers.append(catchment) 
            row2 = rows2.next() 
        del rows2, row2 
        #Each line flow from one catchment to another. 
        #Add the from-catchment-id and the to-catchment-id 
        #to the attribute table of the lines across catchments. 
        #Remove any lines that flow back into themselved causing loop 
        print "Writing Feature Attributes." 
        counter = 0 
        rows = gp.UpdateCursor(FlowLinesAcrossCatchmentsWithFlowDirections) 
        row = rows.Next() 
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        while row: 
            try: 
                From_ID = CatchmentNumbers[counter] 
                To_ID = CatchmentNumbers[counter + 1] 
            except: 
                pass 
            counter += 2 
            #Edges can cross catchment boundaries but from-to the same catchment 
            #causes a closed loop that chokes the spanning tree. 
            #If this happens, delete that row to avoid sinks in sinks. 
            if From_ID == To_ID or From_ID in ListOfPourPointCatchments: 
                    rows.DeleteRow(row) 
            else: 
                row.From_ID = From_ID 
                row.To_ID = To_ID 
                rows.UpdateRow(row) 
            row = rows.Next() 
        del row, rows 
        print "Finished with AddCatchmentIDsToFlowLines()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error in AddCatchmentIDsToFlowLines()." 
        sys.exit() 
def FeatureZGeometryFromAPolylineZToList(InputFeatureClass): 
    #Gets the feature geometry from a polyline z and 
    #write the xyz values of the from nodes and to nodes 
    #to a Python list. 
    try: 
        print "\nCall FeatureZGeometryFromAPolylineZToList()" 
        desc = gp.Describe(InputFeatureClass) 
        shapefieldname = desc.ShapeFieldName 
        print "Start search cursor." 
        rows = gp.SearchCursor(InputFeatureClass) 
        row = rows.Next() 
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        Alltheparts = [] 
        while row: 
            feat = row.GetValue(shapefieldname) 
            partnum = 0 
            partcount = feat.PartCount 
            while partnum < partcount: 
                part = feat.GetPart(partnum) 
                pnt = part.Next() 
                pntcount = 0 
                Thecurrentpart = [] 
                while pnt: 
                    Thecurrentpart.append(pnt.z) 
                    pnt = part.Next() 
                    pntcount += 1 
                    if not pnt:  
                        pnt = part.Next() 
                partnum += 1 
            Alltheparts.append(Thecurrentpart) 
            row = rows.Next() 
        return Alltheparts 
        del row, rows, Thecurrentpart 
        print "Finished FeatureZGeometryFromAPolylineZToList()" 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error writing feature z values to a list." 
        sys.exit() 
 
def WriteFeatureGeometryToTheAttributeTableLines(InputFeatureClass, ListOfZValues): 
    #Read the feature geometry from the Python list generated by 
    #FeatureZGeometryFromAPolylineZToList and writes that feature geometry 
    #to the line file's attribute table. 
    try: 
        print "\nCall WriteFeatureGeometryToTheAttributeTableLines()." 
        try: 
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            print "Add  fields" 
            gp.AddField_management(InputFeatureClass, "FROM_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
            gp.AddField_management(InputFeatureClass, "TO_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
            #gp.AddField_management(InputFeatureClass, "FLOW_LINE", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
            gp.AddField_management(InputFeatureClass, "Per_Slope", "Float", "", "", "", "", "", "NON_REQUIRED", "") 
        except: 
            print "Fields already exist, passing." 
            pass 
        counter = 0 
        print "Start UpdateCursor." 
        rows = gp.UpdateCursor(InputFeatureClass) 
        row = rows.Next() 
        while row: 
            row.FROM_Z = ListOfZValues[counter][0] 
            row.TO_Z = ListOfZValues[counter][1] 
            therise = ListOfZValues[counter][0]- ListOfZValues[counter][1] 
            percentslope = abs(therise/row.Shape_Length *100) 
            row.Per_Slope = percentslope 
            counter += 1 
            rows.UpdateRow(row) 
            row = rows.Next() 
        del row, rows, ListOfZValues, counter 
        print "Finished with WriteFeatureGeometryToTheAttributeTableLines()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with WriteFeatureGeometryToTheAttributeTableLines()." 
        sys.exit() 
 
def IdentifyFlowLineOutOfSinkPolygons(InputFeatureClass1): 
    #The feature class called FlowLinesAcrossCatchmentsWithFlowDirections 
    #represents all flow lines extending out of each polygon. 
    #This functions analyses each line for each polygon and identifies that line which that 
    #has the lowest 'flows from' z value.  Because this line represent the most likely 
    #path water would take if the polygon was filled, this line identifies the connective 
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    #route between two sink polygons.  If there is more than one line that share the same 
    #lowest z value, then the line with the steepest slope is selected.  If there are 
    #more that one line with the same lowest z out value, and the same slope, the last 
    #item returned by the Python sort method is selected. 
    #A new feature class called FlowLinesAcrossCatchmentsWithFlowDirectionsedited is created. 
    #FlowLinesAcrossCatchmentsWithFlowDirectionsedited are those lines that define the path 
    #water would take if filled and flowed into its neighbor.  
 
    try: 
        print "\nCall IdentifyFlowLineOutOfSinkPolygons()" 
        InputFeatureClass1 = "FlowLinesAcrossCatchmentsWithFlowDirections" 
        InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        print "copy features" 
        gp.Copy_management(InputFeatureClass1, InputFeatureClass) 
        print "Write all objectid, from catchment ids, fromz, and slopes to a list" 
        rows = gp.SearchCursor(InputFeatureClass) 
        row = rows.Next() 
        SuperList = [] 
        while row: 
            templist = [] 
            templist.append(row.OBJECTID) 
            templist.append(row.From_ID) 
            templist.append(row.FROM_Z) 
            templist.append(-1 * row.Per_Slope) 
            SuperList.append(templist) 
            row = rows.next() 
        del rows, row 
        #Sort ascending order fromid, fromz, and descending perslope. 
        print "Sort list by ascending catchment id, ascending from z, and descending slope values." 
        SuperList = sorted(SuperList, key=operator.itemgetter(1,2,3)) 
        CatchmentList = [] 
        ObjectIDList = [] 
        #The first item in superlist is the line in that catchment with the lowest fromz and 
        #the steepest slope if more than one, save this line and purge the rest. 
        for item in SuperList: 
            if item[1]not in  CatchmentList: 
                #The first from catchment returned is that line with the lowest z value out, and the steepest slope. 
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                #Save that from catchment id to a list and save that object id, this identifies the flow out lines. 
                CatchmentList.append(item[1]) 
                ObjectIDList.append(item[0]) 
        #Now delete any lines not the line out. 
        rows = gp.UpdateCursor(InputFeatureClass) 
        row = rows.Next() 
        while row: 
            #If the objectid is in the object id list, this is a flow out line, keep it. 
            #Otherwise, remove it from the feature class. 
            if row.OBJECTID in ObjectIDList: 
                pass 
            else: 
                rows.DeleteRow(row) 
            row = rows.next() 
        del rows, row#, SuperList, templist, CatchmentList, ObjectIDList 
        print "Finished IdentifyFlowLineOutOfSinkPolygons()" 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with IdentifyFlowLineOutOfSinkPolygons()." 
        sys.exit() 
 
def CreateListOfFromAndToCatchmentValues(InputFeatureClass): 
    #The lines in FlowLinesAcrossCatchmentsWithFlowDirectionsedited store all the catchment id that they 
    #flow from, flow into, and the z value of the flows to end.  This function reads that feature 
    #class and writes these values to a Python list including a new 'aggregated catchment ID value.  The 
    #resulting list is formatted for use the SpanTheTree(). 
    try: 
        InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        print "\nCall CreateListOfFromAndToCatchmentValues()" 
        ToFromList = [] 
        rows = gp.SearchCursor(InputFeatureClass) 
        row = rows.Next() 
        counter = 0 
        while row: 
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            templist = [] 
            templist.append(row.From_ID) 
            templist.append(row.To_ID) 
            templist.append(row.To_Z) 
            templist.append(0) 
            ToFromList.append(templist) 
            row = rows.next() 
            counter +=1 
        print "Finished with CreateListOfFromAndToCatchmentValues()" 
        del rows, row 
        return ToFromList 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error in CreateListOfFromAndToCatchmentValues()." 
        sys.exit() 
def SpanTheTree(ToFromList, From_ID, counter): 
    #The ToFromList is sort by increasing flows to z values. This 
    #funtions iterates the list and identifies any connected catchments by walking up 
    #the connected graph and checking flows from -flows to values. 
    #The variable counter is used to store a nominal value used to 
    #identify which sinks are connected. 
    try: 
        for item in ToFromList: 
            currentCatchment = From_ID 
            for item2 in ToFromList: 
                if item2[3] == 0 and item2[1] == From_ID: 
                    item2[3] = counter 
                    From_ID = item2[0] 
                    ToFromList = SpanTheTree(ToFromList, From_ID, counter) 
        return ToFromList 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
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        print ErrorDesc.message 
        print "Error in SpanTheTree()." 
        sys.exit() 
 
def AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList): 
    #Dissolves catchments together that share connected flow by iterating the ToFromList. 
    #If the catchment value exists in the ToFromList, it is assigned that new catchment ID value 
    #from an item in the ToFromList which is writen to a new attribute called Catchments1. 
    #If the catchment is not found in the ToFromList that polygon is asigned an arbitrary unique 
    #nominal value. 
    try: 
        CatchmentsCount = gp.GetCount_management(Catchments) 
        print "\nStart AggregateCatchmentSinksToNewCatchments()" 
        rows = gp.UpdateCursor(Catchments) 
        row = rows.Next() 
        while row: 
            #Identify any catchment polygon without flow in or out (edge polygons) 
            noflowpathcatchment = 0 
            for item in ToFromList: 
                if item[0] == row.Catchments or item[1] == row.Catchments: 
                    row.Catchment1 = item[3] 
                    #This row has flow in or out, so assign noflowpathcatchment a value of 1 and break the iteration. 
                    noflowpathcatchment = 1 
                    break 
            #The ToFromList was iterated and no connective flow found, give the catchment 
            #a unique catchment1 id.  The CatchmentCount is used to assign a values that will not conflict 
            #with the catchment1 IDs defined earlier in the code. 
            if noflowpathcatchment == 0: 
                row.Catchment1 = int(CatchmentsCount) 
                CatchmentsCount -=1 
            rows.UpdateRow(row) 
            row = rows.Next() 
        print  "Create Catchments featureclass." 
        CatchmentsFirstFill = "CatchmentsFirstFill" 
        gp.Dissolve_management(Catchments, CatchmentsFirstFill, "Catchment1", "", "MULTI_PART", "DISSOLVE_LINES") 
        gp.AddField_management(CatchmentsFirstFill, "Catchments", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        gp.CalculateField_management(CatchmentsFirstFill, "Catchments", "[OBJECTID]", "VB", "")     
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        gp.CalculateField_management(CatchmentsFirstFill, "Catchment1", "[OBJECTID]", "VB", "") 
        print "RenameFiles and Proceed." 
        dummy = 1 
        counter = 1 
        while dummy == 1: 
            newcatchment = "Catchments" + str(counter) 
            print "Check for " + newcatchment 
            if gp.Exists(newcatchment): 
                counter +=1  
            else: 
                print "rename Catchments to ", newcatchment 
                gp.Rename_management(Catchments, newcatchment, "FeatureClass") 
                print "Rename CatchmentsFirstFill" 
                gp.Rename_management(CatchmentsFirstFill, Catchments, "FeatureClass")                 
                print "reset dummy" 
                dummy = 0 
        print "Finished with AggregateCatchmentSinksToNewCatchments()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with AggregateCatchmentSinksToNewCatchments()." 
        sys.exit() 
############## 
try: 
    try: 
        print "Create geoprocessor." 
        gp = arcgisscripting.create() 
        print "Set product type to ArcInfo." 
        gp.SetProduct("ArcInfo") 
        gp.overwriteoutput = overwriteoutput 
        print "Check out 3D and SA extentions." 
        gp.CheckOutExtension("3D") 
        gp.CheckOutExtension("sa") 
        print "Set workspace directory." 
        gp.workspace = TheWorkingDirectory 
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        gp.RefreshCatalog(TheWorkingDirectory) 
        starttime = time.time() 
        t = time.localtime(starttime) 
        print "Start Time = " + GetTime(t) 
        #Script defined (required) variables. Do not alter these variable names... 
        print "Define variables." 
        Edges = "Edges" 
        Catchments = "Catchments" 
        FlowLinesAcrossCatchments = "FlowLinesAcrossCatchments" 
        Nodes = "Nodes" 
        BoundingPolygon = "BoundingPolygon" 
        BoundingPolygonLine = "BoundingPolygonLine" 
        EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries" 
        FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections" 
        FlowLinesAcrossCatchmentsWithFlowDirectionsLayer = "FlowLinesAcrossCatchmentsWithFlowDirectionsLayer" 
        CatchmentsFirstFill = "CatchmentsFirstFill" 
        NodesFeatureLayer = "NodesFeatureLayer" 
        FlowLinesAcrossCatchmentsFeatureLayer = "FlowLinesAcrossCatchmentsFeatureLayer" 
        startnodes = "startnodes" 
        startnodes_Output_Layer = "startnodes_Output_Layer" 
        FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        EndNodesWithCatchmentIDs = "EndNodesWithCatchmentIDs" 
        FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1" 
        EndNodes = "EndNodes" 
        SpatialJoinOutput = "SpatialJoinOutput" 
        EndNodesTemp = "EndNodesTemp" 
        EndNodes_Dissolve = "EndNodes_Dissolve" 
        CatchmentsFirstFillTemp = "CatchmentsFirstFillTemp" 
        ListOFZValues = [] 
    except: 
        print "Error in creating gp or declaring variables." 
        sys.exit() 
    #Keep doing this until the EndProgram() is called. 
    while True: 
        FillDonut(Catchments) 
        ListOfPourPointCatchments = SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata) 
        AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile) 
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        AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments) 
        ListOFZValues = FeatureZGeometryFromAPolylineZToList(FlowLinesAcrossCatchmentsWithFlowDirections) 
        WriteFeatureGeometryToTheAttributeTableLines(FlowLinesAcrossCatchmentsWithFlowDirections, ListOFZValues) 
        IdentifyFlowLineOutOfSinkPolygons(FlowLinesAcrossCatchmentsWithFlowDirections) 
        ToFromList = CreateListOfFromAndToCatchmentValues(FlowLinesAcrossCatchmentsWithFlowDirectionsedited) 
        ToFromList = sorted(ToFromList,key=operator.itemgetter(2)) 
        counter = 1 
        for item in ToFromList: 
            currentCatchment = item[1] 
            for item2 in ToFromList: 
                if item2[1] == currentCatchment and item2[3] == 0: 
                    item2[3] = counter 
                    From_ID = item2[0] 
                    itemcounter = 0 
                    FromToCatchmentIDs = SpanTheTree(ToFromList, From_ID, counter) 
            counter +=1    
        AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList)      
except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
except Exception, ErrorDesc: 
    print ErrorDesc.message 
    print "General Python Error." 
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Appendix D- 3_AggregateSinkCatchments.py 
 
print "Assign sink polygons to catchments " 
 
######User Defined Variables###################################### 
#The path to the geodatabase feature dataset 
TheWorkingDirectory = r"C:\Temp\ITSMHydro2011CorrectNames\TestData\CanyonLake.gdb\ITSMHydro" 
#A textfile path and name (must be a read\write space.) 
textfile =  r"C:\Temp\GBGTempTextFileForReassignLineDirections.txt" 
#Set to 1 to delete the temp feature classes. 
overwriteoutput = 1 
deletetempdata = 0 
#################################################################### 
 
import sys, string, os, arcgisscripting, math, operator, exceptions, shutil, time 
 
def GetTime(t): 
    #Convert time to a readable format and to time code execution. 
    theyear = t[0] 
    themonth = t[1] 
    theday = t[2] 
    thehour = t[3] 
    theminutes = t[4] 
    theseconds = t[5] 
    thedate = str(themonth) + r"/" + str(theday) + r"/" + str(theyear) 
    starttime = str(thehour) + ":" + str(theminutes) + ":"+str(theseconds) 
    return thedate +", "+ starttime 
 
def EndProgram(starttime, deletetempdata): 
    #Quit the program,delete temporary data file if requested, and 
    #print code execution time. 
    if deletetempdata == 1: 
        print "Delete temp data" 
        EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries" 
        FlowLinesAcrossCatchmentsWithFlowDirections ="FlowLinesAcrossCatchmentsWithFlowDirections" 
        SpatialJoinOutput = "SpatialJoinOutput" 
        FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1" 
        FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        gp.Delete_management(EdgesAccrossCatchmentBoundaries) 
        gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirections) 
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        gp.Delete_management(SpatialJoinOutput) 
        gp.Delete_management(FeatureVerticiesToPoints1) 
        gp.Delete_management(FlowLinesAcrossCatchmentsWithFlowDirectionsedited) 
    endtime = time.time() 
    t = time.localtime(endtime) 
    print "Finished at " + GetTime(t) 
    totalseconds = endtime - starttime 
    hours1 = totalseconds/3600 
    hours = int(hours1) 
    minutes2 = hours1 - hours 
    minutes1 = minutes2*60 
    minutes = int(minutes1) 
    seconds = int((minutes1-minutes)*60) 
    print "\n\nTime to Process; "+str(hours) +": "+str(minutes) +": "+str(seconds) 
    x = raw_input("Finished! Press enter to quit") 
    sys.exit(0) 
   
def FillDonut(inputfeatureclass): 
    #Catchment delineations can have other polygons bound within them. Delete any 
    #verticies of a polygon the represent the interior portion of the feature 
    #by identifing interior nodes and delete them using a feature geometry array. 
    #The bounding polygon is no longer an annulus but a different record exists 
    #that represents the area covered by the inner hole.  Find those remaining 
    #features and delete them. The resulting feature class represents an irregular 
    #tesselation of polygons with no polygons bound within any other polygon. 
    try: 
        print "\nCall FillDonut()" 
        desc = gp.Describe(inputfeatureclass) 
        shapefield = desc.ShapeFieldName 
        rows = gp.UpdateCursor(inputfeatureclass) 
        row = rows.next() 
        arrayObj = gp.CreateObject("Array") 
        arrayOuter = gp.CreateObject("Array") 
        ListOfIDs = [] 
        while row: 
            feat = row.getValue(shapefield) 
            qInterior = False 
            for partNum in range(feat.partCount) : 
                part = feat.getPart(partNum)  
                qInterior = False 
                for ptNum in range(part.count): 
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                    pt = part.next()  
                    if pt != None: 
                        arrayOuter.add(pt) 
                    else : 
                        qInterior = True 
                        break 
                arrayObj.add(arrayOuter) 
                arrayOuter.RemoveAll() 
            if qInterior : 
                row.setValue(shapefield,arrayObj) 
                rows.updateRow(row) 
                ListOfIDs.append(row.OBJECTID) 
            arrayObj.RemoveAll() 
            row = rows.next() 
        del rows,row 
        Catchments_Layer = "Catchments_Layer" 
        gp.MakeFeatureLayer_management(inputfeatureclass, Catchments_Layer, "", "", "") 
        if ListOfIDs != []: 
            print "Filling features bound within other catchments." 
            for item in ListOfIDs: 
                gp.SelectLayerByAttribute_management(Catchments_Layer, "NEW_SELECTION", "\"OBJECTID\" = " + str(item)) 
                gp.SelectLayerByLocation_management(Catchments_Layer, "COMPLETELY_WITHIN", Catchments_Layer, "", "NEW_SELECTION") 
                gp.DeleteFeatures_management(Catchments_Layer) 
        else: 
            print "No features bound within other features." 
        print "Finished with FillDonut()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error in FillDonut()." 
        sys.exit() 
 
def SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata): 
    #Identifies those edge lines that cross catchment boundaries. Any polygon touching the 
    #convex hull are excluded meaning all edge polygons can recieve flow from 
    #non-edge polygons, but that cannot flow back into interior polygons.  All 
    #edge polygons must flow off the surface model.  
    #This function also calculates the number of polygons that touch the convex hull 
    #and the count of those that don't touch the convex hull.  If those counts are the same, then all 
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    #aggregations are complete and the function calls EndProgram() 
    try:     
        print "\nCall SelectEdgeLinesThatCrossCatchmentBoundaries()." 
        Output_Layer = "Output_Layer" 
        Catchments_Output_Layer ="Catchments_Output_Layer" 
        EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries" 
        BoundingPolygon_Output_Layer= "Convex_Hull_Output_Layer" 
        #Add an attribute to indentify if this catchment touches the edge of the convex hull 
        gp.AddField_management(Catchments, "IS_POUR_PT", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
        print "Make Feature Layer." 
        #Make Feature Layers... 
        gp.MakeFeatureLayer_management(Edges, Output_Layer, "", "", "") 
        gp.MakeFeatureLayer_management(Catchments, Catchments_Output_Layer, "", "", "") 
        gp.MakeFeatureLayer_management(BoundingPolygonLine, BoundingPolygon_Output_Layer, "", "", "") 
        #Select only those sinks that do not touch the edge of the surface model, This tool assumes that all 
        #polygons touching the convex hull can receive flow but do not flow into the surface model. 
        CatchmentsCount = gp.GetCount_management(Catchments) 
        print "CatchmentsCount = ", CatchmentsCount 
        gp.SelectLayerByLoc 
 
ation_management(Catchments_Output_Layer, "BOUNDARY_TOUCHES", BoundingPolygon_Output_Layer, "", "NEW_SELECTION") 
        CatchmentsTouchingBoundingPolygon = gp.GetCount_management(Catchments_Output_Layer) 
        print "CatchmentsTouchingBoundingPolygon = ", CatchmentsTouchingBoundingPolygon 
        if CatchmentsCount == CatchmentsTouchingBoundingPolygon: 
            print "\n\nAll Catchments intersect the convex hull." 
            EndProgram(starttime, deletetempdata) 
        gp.CalculateField_management(Catchments_Output_Layer, "IS_POUR_PT", "1", "VB") 
        #Get a list of all the catchments touching the convex hull. 
        ListOfPourPointCatchments = [] 
        rows2 = gp.SearchCursor(Catchments_Output_Layer) 
        row2 = rows2.Next() 
        while row2: 
            if row2.IS_POUR_PT == 1: 
                ListOfPourPointCatchments.append(row2.Catchments) 
            row2 = rows2.next() 
        del rows2, row2 
        #Select only those catchment polygons that are interior polygons. 
        gp.SelectLayerByLocation_management(Catchments_Output_Layer, "", "", "", "SWITCH_SELECTION") 
        print "Select all edges that cross the boundary of the selected polygons." 
        gp.SelectLayerByLocation_management(Output_Layer, "CROSSED_BY_THE_OUTLINE_OF", Catchments_Output_Layer, "", "NEW_SELECTION") 
        print "Create feature class EdgesAccrossCatchmentBoundaries." 
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        gp.CopyFeatures_management(Output_Layer, EdgesAccrossCatchmentBoundaries, "", "0", "0", "0") 
        del Output_Layer, Catchments_Output_Layer, EdgesAccrossCatchmentBoundaries, BoundingPolygon_Output_Layer 
        print "Finished SelectEdgeLinesThatCrossCatchmentBoundaries()" 
        return ListOfPourPointCatchments 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with SelectEdgeLinesThatCrossCatchmentBoundaries()" 
        sys.exit() 
         
def AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile): 
    #ESRI feature class geometry holds a start node and an end node.  These nodes are independent of 
    #poly z objects.  Because lines can have a start node with a lower elevation than a end node, 
    #reassign the line direction so that the highest z value is that start node. 
    #Feature geometry is read using cursors identifying the start and end node z values and written to a list. 
    #The line-node coordinates are flipped if necessary so that the line start has the highest z value. 
    #The resulting geometry is written to a text file and that text file is used to create a new feature class so 
    #that line direction is the same as the flow direction. 
    try: 
        print "\nCall AlterLineGeometryFlowsFrom2FlowsTo()." 
        FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections" 
        if os.path.exists(textfile): 
            os.remove(textfile) 
        print "Create Text File." 
        f = open(textfile,'a') 
        thestring = "polyline\n" 
        f.writelines(thestring) 
        f.close() 
        print "Read Feature Geometry. Create Correct Flow Directions." 
        desc = gp.Describe(EdgesAccrossCatchmentBoundaries) 
        shapefieldname = desc.ShapeFieldName 
        rows = gp.SearchCursor(EdgesAccrossCatchmentBoundaries) 
        row = rows.Next() 
        while row: 
            feat = row.GetValue(shapefieldname) 
            FeatureID = str(row.getvalue(desc.OIDFieldName)) 
            partnum = 0 
            partcount = feat.PartCount 
            while partnum < partcount: 
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                ThePart = str(partnum) 
                part = feat.GetPart(partnum) 
                pnt = part.Next() 
                pntcount = 0 
                Thecurrentpart = [] 
                while pnt: 
                    Thecurrentpart.append(pnt.x) 
                    Thecurrentpart.append(pnt.y) 
                    Thecurrentpart.append(pnt.z) 
                    pnt = part.Next() 
                    pntcount += 1 
                    if not pnt:  
                        pnt = part.Next() 
                        if pnt: 
                            print "Interior Ring:" 
                partnum += 1 
            #If the from z is lower than the to z, flip them, write the results to a text file... 
            if Thecurrentpart[2]<Thecurrentpart[5]:     
                thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[3])+ " "+ str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+ "\n" +"1 "+ str(Thecurrentpart[0])+ " "+ 
str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+"\n" 
            else:     
                thestring = FeatureID +" 0" + "\n" + "0 " + str(Thecurrentpart[0])+ " "+ str(Thecurrentpart[1])+ " "+ str(Thecurrentpart[2])+ "\n" +"1 "+ str(Thecurrentpart[3])+ " "+ 
str(Thecurrentpart[4])+ " "+ str(Thecurrentpart[5])+"\n" 
            f = open(textfile,'a') 
            f.writelines(thestring) 
            f.close()     
            row = rows.Next() 
        f = open(textfile,'a') 
        thestring = "END" 
        f.writelines(thestring) 
        f.close() 
        del row, rows 
        #Create a new feature class that has the correct flow directions. 
        print "Create Features from Text File." 
        #Process: Create Features From Text File... 
        gp.CreateFeaturesFromTextFile_samples(textfile, ".", FlowLinesAcrossCatchmentsWithFlowDirections, "") 
        print "Finished AlterLineGeometryFlowsFrom2FlowsTo()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
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        print ErrorDesc.message 
        print "Error with AlterLineGeometryFlowsFrom2FlowsTo()." 
        sys.exit() 
         
def AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments): 
    # This function appends to the attribute table of FlowLinesAcrossCatchmentsWithFlowDirections the 
    #catchment ID for the catchment the line originates in and the catchment it ends in by exporting line nodes 
    #to a new feature class, using a spatial join to append the catchment ID to the nodes.  The resuting nodes 
    #catchment values are read with a cursor and stored in a Python list.  Finally, this list is iterated and the 
    #catchment IDs are written to the attribute table of the lines.  The FlowLinesAcrossCatchmentsWithFlowDirections 
    #feature class will store the catchment IDs in  attributes called From_ID, and To_ID. 
    #Any line that originates in catchment x and flow back into it that same catchment is removed from the feature class 
    #because this will cause closed loops which are not- reconsilable with the spanning tree funtion. 
    try: 
        print "\nCall AddCatchmentIDsToFlowLines()" 
        SpatialJoinOutput = "SpatialJoinOutput" 
        FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1" 
        print "Adding Fields" 
        gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "From_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        gp.AddField_management(FlowLinesAcrossCatchmentsWithFlowDirections, "To_ID", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        gp.AddField_management(Catchments, "Catchment1", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        #Get the catchment IDs for the lines that cross the catchment boundaries. 
        print "Export Vertices to Points." 
        gp.FeatureVerticesToPoints_management(FlowLinesAcrossCatchmentsWithFlowDirections, FeatureVerticiesToPoints1, "BOTH_ENDS") 
        print "Join Vertices to Catchment IDs" 
        fieldmappings = gp.CreateObject("FieldMappings") 
        fieldmappings.AddTable(Catchments) 
        fieldmap = fieldmappings.GetFieldMap(fieldmappings.FindFieldMapIndex("Catchments")) 
        field = fieldmap.OutputField 
        field.Name = "Catchments" 
        fieldmap.OutputField = field 
        fieldmappings.ReplaceFieldMap(fieldmappings.FindFieldMapIndex("Catchments"), fieldmap) 
        gp.SpatialJoin_analysis(FeatureVerticiesToPoints1, Catchments, SpatialJoinOutput, "JOIN_ONE_TO_ONE", "KEEP_ALL",fieldmappings ) 
        #Enummerate the points and get the values of the catchments 
        #Write the catchments to a list.... 
        #Because the FeatureVerticiesToPoints1 points are in order (from to) and 
        #by original line FID, you can read the points and append to the lines. 
        print "Searching Feature Attributes." 
        rows2 = gp.SearchCursor(SpatialJoinOutput) 
        row2 = rows2.Next() 
        CatchmentNumbers = [] 
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        while row2: 
            catchment = row2.Catchments 
            CatchmentNumbers.append(catchment) 
            row2 = rows2.next() 
        del rows2, row2 
        #Each line flow from one catchment to another. 
        #Add the from-catchment-id and the to-catchment-id 
        #to the attribute table of the lines across catchments. 
        #Remove any lines that flow back into themselved causing loop 
        print "Writing Feature Attributes." 
        counter = 0 
        rows = gp.UpdateCursor(FlowLinesAcrossCatchmentsWithFlowDirections) 
        row = rows.Next() 
        while row: 
            try: 
                From_ID = CatchmentNumbers[counter] 
                To_ID = CatchmentNumbers[counter + 1] 
            except: 
                pass 
            counter += 2 
            #Edges can cross catchment boundaries but from-to the same catchment 
            #causes a closed loop that chokes the spanning tree. 
            #If this happens, delete that row to avoid sinks in sinks. 
            if From_ID == To_ID or From_ID in ListOfPourPointCatchments: 
                    rows.DeleteRow(row) 
            else: 
                row.From_ID = From_ID 
                row.To_ID = To_ID 
                rows.UpdateRow(row) 
            row = rows.Next() 
        del row, rows 
        print "Finished with AddCatchmentIDsToFlowLines()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error in AddCatchmentIDsToFlowLines()." 
        sys.exit() 
   
def FeatureZGeometryFromAPolylineZToList(InputFeatureClass): 
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    #Gets the feature geometry from a polyline z and 
    #write the xyz values of the from nodes and to nodes 
    #to a Python list. 
    try: 
        print "\nCall FeatureZGeometryFromAPolylineZToList()" 
        desc = gp.Describe(InputFeatureClass) 
        shapefieldname = desc.ShapeFieldName 
        print "Start search cursor." 
        rows = gp.SearchCursor(InputFeatureClass) 
        row = rows.Next() 
        Alltheparts = [] 
        while row: 
            feat = row.GetValue(shapefieldname) 
            partnum = 0 
            partcount = feat.PartCount 
            while partnum < partcount: 
                part = feat.GetPart(partnum) 
                pnt = part.Next() 
                pntcount = 0 
                Thecurrentpart = [] 
                while pnt: 
                    Thecurrentpart.append(pnt.z) 
                    pnt = part.Next() 
                    pntcount += 1 
                    if not pnt:  
                        pnt = part.Next() 
                partnum += 1 
            Alltheparts.append(Thecurrentpart) 
            row = rows.Next() 
        return Alltheparts 
        del row, rows, Thecurrentpart 
        print "Finished FeatureZGeometryFromAPolylineZToList()" 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error writing feature z values to a list." 
        sys.exit() 
 
def WriteFeatureGeometryToTheAttributeTableLines(InputFeatureClass, ListOfZValues): 
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    #Read the feature geometry from the Python list generated by 
    #FeatureZGeometryFromAPolylineZToList and writes that feature geometry 
    #to the line file's attribute table. 
    try: 
        print "\nCall WriteFeatureGeometryToTheAttributeTableLines()." 
        try: 
            print "Add  fields" 
            gp.AddField_management(InputFeatureClass, "FROM_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
            gp.AddField_management(InputFeatureClass, "TO_Z", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
            #gp.AddField_management(InputFeatureClass, "FLOW_LINE", "DOUBLE", "", "", "", "", "", "NON_REQUIRED", "") 
            gp.AddField_management(InputFeatureClass, "Per_Slope", "Float", "", "", "", "", "", "NON_REQUIRED", "") 
        except: 
            print "Fields already exist, passing." 
            pass 
        counter = 0 
        print "Start UpdateCursor." 
        rows = gp.UpdateCursor(InputFeatureClass) 
        row = rows.Next() 
        while row: 
            row.FROM_Z = ListOfZValues[counter][0] 
            row.TO_Z = ListOfZValues[counter][1] 
            therise = ListOfZValues[counter][0]- ListOfZValues[counter][1] 
            percentslope = abs(therise/row.Shape_Length *100) 
            row.Per_Slope = percentslope 
            counter += 1 
            rows.UpdateRow(row) 
            row = rows.Next() 
        del row, rows, ListOfZValues, counter 
        print "Finished with WriteFeatureGeometryToTheAttributeTableLines()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with WriteFeatureGeometryToTheAttributeTableLines()." 
        sys.exit() 
 
def IdentifyFlowLineOutOfSinkPolygons(InputFeatureClass1): 
     
    #The feature class called FlowLinesAcrossCatchmentsWithFlowDirections 
    #represents all flow lines extending out of each polygon. 
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    #This functions analyses each line for each polygon and identifies that line which that 
    #has the lowest 'flows from' z value.  Because this line represent the most likely 
    #path water would take if the polygon was filled, this line identifies the connective 
    #route between two sink polygons.  If there is more than one line that share the same 
    #lowest z value, then the line with the steepest slope is selected.  If there are 
    #more that one line with the same lowest z out value, and the same slope, the last 
    #item returned by the Python sort method is selected. 
    #A new feature class called FlowLinesAcrossCatchmentsWithFlowDirectionsedited is created. 
    #FlowLinesAcrossCatchmentsWithFlowDirectionsedited are those lines that define the path 
    #water would take if filled and flowed into its neighbor.  
    try: 
        print "\nCall IdentifyFlowLineOutOfSinkPolygons()" 
        InputFeatureClass1 = "FlowLinesAcrossCatchmentsWithFlowDirections" 
        InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        print "copy features" 
        gp.Copy_management(InputFeatureClass1, InputFeatureClass) 
        print "Write all objectid, from catchment ids, fromz, and slopes to a list" 
        rows = gp.SearchCursor(InputFeatureClass) 
        row = rows.Next() 
        SuperList = [] 
        while row: 
            templist = [] 
            templist.append(row.OBJECTID) 
            templist.append(row.From_ID) 
            templist.append(row.FROM_Z) 
            templist.append(-1 * row.Per_Slope) 
            SuperList.append(templist) 
            row = rows.next() 
        del rows, row 
        #Sort ascending order fromid, fromz, and descending perslope. 
        print "Sort list by ascending catchment id, ascending from z, and descending slope values." 
        SuperList = sorted(SuperList, key=operator.itemgetter(1,2,3)) 
        CatchmentList = [] 
        ObjectIDList = [] 
        #The first item in superlist is the line in that catchment with the lowest fromz and 
        #the steepest slope if more than one, save this line and purge the rest. 
        for item in SuperList: 
            if item[1]not in  CatchmentList: 
                #The first from catchment returned is that line with the lowest z value out, and the steepest slope. 
                #Save that from catchment id to a list and save that object id, this identifies the flow out lines. 
                CatchmentList.append(item[1]) 
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                ObjectIDList.append(item[0]) 
        #Now delete any lines not the line out. 
        rows = gp.UpdateCursor(InputFeatureClass) 
        row = rows.Next() 
        while row: 
            #If the objectid is in the object id list, this is a flow out line, keep it. 
            #Otherwise, remove it from the feature class. 
            if row.OBJECTID in ObjectIDList: 
                pass 
            else: 
                rows.DeleteRow(row) 
            row = rows.next() 
        del rows, row#, SuperList, templist, CatchmentList, ObjectIDList 
        print "Finished IdentifyFlowLineOutOfSinkPolygons()" 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with IdentifyFlowLineOutOfSinkPolygons()." 
        sys.exit() 
 
def CreateListOfFromAndToCatchmentValues(InputFeatureClass): 
    #The lines in FlowLinesAcrossCatchmentsWithFlowDirectionsedited store all the catchment id that they 
    #flow from, flow into, and the z value of the flows to end.  This function reads that feature 
    #class and writes these values to a Python list including a new 'aggregated catchment ID value.  The 
    #resulting list is formatted for use the SpanTheTree(). 
    try: 
        InputFeatureClass = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        print "\nCall CreateListOfFromAndToCatchmentValues()" 
        ToFromList = [] 
        rows = gp.SearchCursor(InputFeatureClass) 
        row = rows.Next() 
        counter = 0 
        while row: 
            templist = [] 
            templist.append(row.From_ID) 
            templist.append(row.To_ID) 
            templist.append(row.To_Z) 
            templist.append(0) 
            ToFromList.append(templist) 
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            row = rows.next() 
            counter +=1 
        print "Finished with CreateListOfFromAndToCatchmentValues()" 
        del rows, row 
        return ToFromList 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error in CreateListOfFromAndToCatchmentValues()." 
        sys.exit() 
def SpanTheTree(ToFromList, From_ID, counter): 
    #The ToFromList is sort by increasing flows to z values. This 
    #funtions iterates the list and identifies any connected catchments by walking up 
    #the connected graph and checking flows from -flows to values. 
    #The variable counter is used to store a nominal value used to 
    #identify which sinks are connected. 
    try: 
        for item in ToFromList: 
            currentCatchment = From_ID 
            for item2 in ToFromList: 
                if item2[3] == 0 and item2[1] == From_ID: 
                    item2[3] = counter 
                    From_ID = item2[0] 
                    ToFromList = SpanTheTree(ToFromList, From_ID, counter) 
        return ToFromList 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error in SpanTheTree()." 
        sys.exit() 
def AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList): 
    #Dissolves catchments together that share connected flow by iterating the ToFromList. 
    #If the catchment value exists in the ToFromList, it is assigned that new catchment ID value 
    #from an item in the ToFromList which is writen to a new attribute called Catchments1. 
    #If the catchment is not found in the ToFromList that polygon is asigned an arbitrary unique 
    #nominal value. 
    try: 
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        CatchmentsCount = gp.GetCount_management(Catchments) 
        print "\nStart AggregateCatchmentSinksToNewCatchments()" 
        rows = gp.UpdateCursor(Catchments) 
        row = rows.Next() 
        while row: 
            #Identify any catchment polygon without flow in or out (edge polygons) 
            noflowpathcatchment = 0 
            for item in ToFromList: 
                if item[0] == row.Catchments or item[1] == row.Catchments: 
                    row.Catchment1 = item[3] 
                    #This row has flow in or out, so assign noflowpathcatchment a value of 1 and break the iteration. 
                    noflowpathcatchment = 1 
                    break 
            #The ToFromList was iterated and no connective flow found, give the catchment 
            #a unique catchment1 id.  The CatchmentCount is used to assign a values that will not conflict 
            #with the catchment1 IDs defined earlier in the code. 
            if noflowpathcatchment == 0: 
                row.Catchment1 = int(CatchmentsCount) 
                CatchmentsCount -=1 
            rows.UpdateRow(row) 
            row = rows.Next() 
        print  "Create Catchments featureclass." 
        CatchmentsFirstFill = "CatchmentsFirstFill" 
        gp.Dissolve_management(Catchments, CatchmentsFirstFill, "Catchment1", "", "MULTI_PART", "DISSOLVE_LINES") 
        gp.AddField_management(CatchmentsFirstFill, "Catchments", "SHORT", "", "", "", "", "", "NON_REQUIRED", "") 
        gp.CalculateField_management(CatchmentsFirstFill, "Catchments", "[OBJECTID]", "VB", "")     
        gp.CalculateField_management(CatchmentsFirstFill, "Catchment1", "[OBJECTID]", "VB", "") 
        print "RenameFiles and Proceed." 
        dummy = 1 
        counter = 1 
        while dummy == 1: 
            newcatchment = "Catchments" + str(counter) 
            print "Check for " + newcatchment 
            if gp.Exists(newcatchment): 
                counter +=1  
            else: 
                print "rename Catchments to ", newcatchment 
                gp.Rename_management(Catchments, newcatchment, "FeatureClass") 
                print "Rename CatchmentsFirstFill" 
                gp.Rename_management(CatchmentsFirstFill, Catchments, "FeatureClass")                 
                print "reset dummy" 
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                dummy = 0 
        print "Finished with AggregateCatchmentSinksToNewCatchments()." 
    except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
        sys.exit() 
    except Exception, ErrorDesc: 
        print ErrorDesc.message 
        print "Error with AggregateCatchmentSinksToNewCatchments()." 
        sys.exit() 
############## 
try: 
    try: 
        print "Create geoprocessor." 
        gp = arcgisscripting.create() 
        print "Set product type to ArcInfo." 
        gp.SetProduct("ArcInfo") 
        gp.overwriteoutput = overwriteoutput 
        print "Check out 3D and SA extentions." 
        gp.CheckOutExtension("3D") 
        gp.CheckOutExtension("sa") 
        print "Set workspace directory." 
        gp.workspace = TheWorkingDirectory 
        gp.RefreshCatalog(TheWorkingDirectory) 
        starttime = time.time() 
        t = time.localtime(starttime) 
        print "Start Time = " + GetTime(t) 
        #Script defined (required) variables. Do not alter these variable names... 
        print "Define variables." 
        Edges = "Edges" 
        Catchments = "Catchments" 
        FlowLinesAcrossCatchments = "FlowLinesAcrossCatchments" 
        Nodes = "Nodes" 
        BoundingPolygon = "BoundingPolygon" 
        BoundingPolygonLine = "BoundingPolygonLine" 
        EdgesAccrossCatchmentBoundaries = "EdgesAccrossCatchmentBoundaries" 
        FlowLinesAcrossCatchmentsWithFlowDirections = "FlowLinesAcrossCatchmentsWithFlowDirections" 
        FlowLinesAcrossCatchmentsWithFlowDirectionsLayer = "FlowLinesAcrossCatchmentsWithFlowDirectionsLayer" 
        CatchmentsFirstFill = "CatchmentsFirstFill" 
        NodesFeatureLayer = "NodesFeatureLayer" 
        FlowLinesAcrossCatchmentsFeatureLayer = "FlowLinesAcrossCatchmentsFeatureLayer" 
        startnodes = "startnodes" 
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        startnodes_Output_Layer = "startnodes_Output_Layer" 
        FlowLinesAcrossCatchmentsWithFlowDirectionsedited = "FlowLinesAcrossCatchmentsWithFlowDirectionsedited" 
        EndNodesWithCatchmentIDs = "EndNodesWithCatchmentIDs" 
        FeatureVerticiesToPoints1 = "FeatureVerticiesToPoints1" 
        EndNodes = "EndNodes" 
        SpatialJoinOutput = "SpatialJoinOutput" 
        EndNodesTemp = "EndNodesTemp" 
        EndNodes_Dissolve = "EndNodes_Dissolve" 
        CatchmentsFirstFillTemp = "CatchmentsFirstFillTemp" 
        ListOFZValues = [] 
    except: 
        print "Error in creating gp or declaring variables." 
        sys.exit() 
    #Keep doing this until the EndProgram() is called. 
    while True: 
        FillDonut(Catchments) 
        ListOfPourPointCatchments = SelectEdgeLinesThatCrossCatchmentBoundaries(Edges, Catchments, BoundingPolygonLine,starttime, deletetempdata) 
        AlterLineGeometryFlowsFrom2FlowsTo(EdgesAccrossCatchmentBoundaries, textfile) 
        AddCatchmentIDsToFlowLines(FlowLinesAcrossCatchmentsWithFlowDirections, Catchments, ListOfPourPointCatchments) 
        ListOFZValues = FeatureZGeometryFromAPolylineZToList(FlowLinesAcrossCatchmentsWithFlowDirections) 
        WriteFeatureGeometryToTheAttributeTableLines(FlowLinesAcrossCatchmentsWithFlowDirections, ListOFZValues) 
        IdentifyFlowLineOutOfSinkPolygons(FlowLinesAcrossCatchmentsWithFlowDirections) 
        ToFromList = CreateListOfFromAndToCatchmentValues(FlowLinesAcrossCatchmentsWithFlowDirectionsedited) 
        ToFromList = sorted(ToFromList,key=operator.itemgetter(2)) 
        counter = 1 
        for item in ToFromList: 
            currentCatchment = item[1] 
            for item2 in ToFromList: 
                if item2[1] == currentCatchment and item2[3] == 0: 
                    item2[3] = counter 
                    From_ID = item2[0] 
                    itemcounter = 0 
                    FromToCatchmentIDs = SpanTheTree(ToFromList, From_ID, counter) 
            counter +=1    
        AggregateCatchmentSinksToNewCatchments(Catchments, ToFromList)      
except arcgisscripting.ExecuteError: 
        print gp.GetMessages(2) 
except Exception, ErrorDesc: 
    print ErrorDesc.message 
    print "General Python Error." 
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Appendix F- Surveyed Sample Locations and Surface Model Elevation Values 
 

Survey Point 
Location Elevations in Feet Above NAVD88 

Longitude Latitude 
Surveyed 
Elevation USGS 10 M 

30 ft. 
Linear 

30 ft. 
Nat. Neig. 

6 ft. 
Linear 

6 ft 
Nat. Neig. 

3 ft. 
Linear 

3 ft. 
Nat. Neig. 

1 ft. 
Linear 

1/2 ft 
Linear 

-122.6250 48.8192 15.19 13.80 14.77 14.57 14.85 14.87 14.87 14.87 14.86 14.86 

-122.6120 48.8191 21.32 13.80 20.55 20.46 20.55 20.50 20.55 20.55 20.55 20.55 

-122.5840 48.8190 17.50 10.94 16.72 16.51 17.13 17.15 17.19 17.20 17.24 17.24 

-122.6000 48.8192 14.36 13.81 13.48 13.31 13.97 14.05 14.06 14.06 14.04 14.04 

-122.6280 48.8193 10.64 7.38 10.42 10.47 10.41 10.43 10.44 10.44 10.46 10.46 

-122.6420 48.8194 10.88 11.17 9.04 8.62 10.49 10.50 10.56 10.53 10.52 10.52 

-122.6830 48.8485 254.86 253.66 254.27 254.31 254.42 254.43 254.45 254.46 254.45 NA 

-122.6850 48.8484 265.92 267.67 265.50 265.43 265.50 265.47 265.45 265.49 265.52 NA 

-122.6500 48.8484 196.72 192.81 196.04 196.24 196.42 196.41 196.45 196.44 196.47 NA 

-122.6460 48.8483 197.30 192.23 196.02 195.67 196.90 197.12 197.08 197.14 197.08 NA 

-122.6350 48.8483 197.51 206.02 196.19 196.10 197.01 197.03 196.98 196.99 196.99 NA 

-122.6230 48.8483 221.99 217.94 220.00 220.59 221.68 221.66 221.66 221.65 221.67 NA 

-122.6160 48.8484 133.50 134.82 132.39 132.66 133.16 133.14 133.15 133.19 133.20 NA 

-122.6670 48.7327 11.60 9.10 10.18 10.05 10.10 10.12 10.12 10.13 10.13 10.13 

-122.6720 48.7321 11.80 5.60 10.19 10.34 10.30 10.29 10.29 10.29 10.33 10.33 

-122.6630 48.7313 31.18 24.61 30.33 30.23 29.97 30.00 29.95 29.96 29.95 29.94 

-122.6590 48.7263 23.73 17.39 22.63 22.49 22.64 22.60 22.63 22.65 22.66 22.66 

-122.6570 48.7214 16.74 9.38 14.79 15.65 15.58 15.58 15.59 15.57 15.57 15.57 

-122.6550 48.7222 58.39 50.17 57.41 57.08 56.74 56.67 56.65 56.67 56.75 56.75 

-122.6420 48.7290 14.22 6.03 12.20 12.55 12.74 12.73 12.74 12.77 12.79 12.79 

-122.6450 48.7245 12.13 6.19 10.94 10.74 11.11 11.09 11.11 11.11 11.13 11.13 
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-122.6470 48.7199 13.56 7.69 11.88 12.08 12.05 12.05 12.04 12.05 12.02 12.02 

-122.6520 48.7173 31.64 27.84 30.34 29.80 30.76 30.82 30.84 30.87 30.87 30.87 

-122.6510 48.7160 12.26 8.04 10.50 10.75 11.39 11.41 11.53 11.47 11.49 11.49 

-122.6270 48.7452 27.63 25.89 25.11 25.18 25.91 25.86 25.82 26.00 26.03 26.05 

-122.6360 48.7377 27.64 26.45 27.66 27.70 28.73 28.74 28.74 28.74 28.75 28.75 

-122.6380 48.7332 26.28 25.96 23.47 23.50 25.35 25.34 25.36 25.38 25.37 25.37 

-122.6380 48.7325 24.24 25.88 22.58 22.89 22.95 22.97 22.95 22.91 22.90 22.90 

-122.6130 48.7556 53.23 48.63 50.35 50.42 48.07 48.06 47.97 48.01 48.03 48.03 

-122.6180 48.7528 45.82 32.12 44.65 44.54 44.73 44.73 44.72 44.70 44.70 44.70 

-122.6210 48.7499 69.23 65.53 64.76 64.80 64.87 64.85 64.87 64.86 64.89 64.89 

-122.6250 48.7467 41.08 30.35 40.17 40.14 40.48 40.48 40.58 40.57 40.46 40.46 

-122.6830 48.8045 47.00 56.13 46.53 46.57 46.32 46.38 46.27 46.38 46.42 46.42 

-122.6240 48.7949 46.50 48.68 46.15 46.10 45.99 46.04 46.00 46.02 46.02 46.02 

-122.5950 48.7960 18.40 7.24 17.95 18.19 18.58 18.51 18.55 18.55 18.56 18.56 

-122.6510 48.7165 19.80 14.25 18.58 18.41 19.61 19.63 19.67 19.67 19.67 19.67 

-122.6610 48.7468 147.05 155.39 145.14 145.39 145.60 145.63 145.66 145.66 145.67 145.67 

-122.6390 48.7576 113.20 116.14 109.94 110.06 110.77 110.80 110.81 110.82 110.83 110.83 

-122.6390 48.7468 84.65 85.93 82.98 83.20 83.30 83.27 83.26 83.28 83.27 83.27 

-122.6040 48.7743 12.81 12.69 11.24 11.23 11.37 11.41 11.40 11.41 11.43 11.43 

-122.6440 48.7762 34.65 18.36 32.72 32.74 32.88 32.86 32.82 32.83 32.82 32.82 

-122.6280 48.7657 156.52 161.72 155.31 155.28 155.18 155.20 155.22 155.20 155.21 155.20 

-122.6100 48.7619 35.13 35.11 32.51 32.93 33.64 33.62 33.66 33.64 33.66 33.66 

-122.6230 48.7950 47.11 51.30 46.59 46.66 46.81 46.78 46.79 46.78 46.82 46.82 

-122.6270 48.7699 119.15 112.10 118.95 119.32 119.39 119.31 119.40 119.42 119.45 119.45 

-122.6490 48.7574 104.45 101.61 104.84 104.90 104.99 105.08 105.12 105.02 104.93 104.92 

-122.6340 48.7578 110.36 116.31 112.89 113.45 113.85 113.88 113.87 113.90 114.09 114.09 

-122.6220 48.7503 65.64 62.93 67.00 67.16 67.28 67.31 67.24 67.29 67.27 67.27 
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-122.6120 48.7609 92.71 98.88 93.29 93.05 92.99 92.71 92.77 92.66 92.49 92.48 

-122.6450 48.7794 34.12 13.92 34.06 34.10 33.92 33.95 33.91 33.91 33.90 33.90 

-122.6550 48.7591 27.53 25.57 27.34 27.18 27.45 27.48 27.46 27.50 27.51 27.52 

-122.6580 48.7488 146.59 145.33 145.77 145.72 146.11 146.08 146.17 146.18 146.15 146.15 

-122.6550 48.7245 56.39 51.39 56.25 56.19 56.26 56.16 56.21 56.18 56.20 56.20 

-122.6670 48.7429 119.28 109.96 118.96 119.06 118.90 118.95 119.02 118.97 119.01 119.02 

-122.6640 48.7395 126.03 128.37 126.07 126.26 126.05 126.04 126.03 126.04 126.00 126.00 

-122.6610 48.7422 145.29 155.43 145.32 145.51 145.08 145.18 145.17 145.13 145.09 145.09 

-122.6550 48.7202 57.26 53.00 59.73 60.08 60.35 60.45 60.58 60.56 60.63 60.64 

-122.6620 48.7425 139.73 144.69 139.68 139.83 139.67 139.66 139.66 139.65 139.62 139.62 

-122.6650 48.7448 144.64 145.80 144.13 144.18 144.21 144.21 144.20 144.21 144.21 144.21 

-122.6420 48.7325 32.41 43.60 31.76 31.63 32.11 32.01 32.01 32.07 32.06 32.05 

-122.6320 48.7633 153.11 160.39 153.41 153.67 153.34 153.37 153.33 153.35 153.35 153.35 

-122.6490 48.7538 141.88 148.20 141.89 141.86 141.94 141.93 141.96 141.95 141.95 141.95 

-122.6560 48.7358 74.94 82.07 75.01 75.17 75.07 75.05 75.13 75.15 75.16 75.16 
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